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1 A simple biological system

Consider a simple biological system composed of two different biological subsystems;
one component with three parallel coupled components, all Weibull(1,12 )-distributed,
and one single fourth exp(1

2 )-distributed component serially coupled to the first three
(see Figure 1). It is of interest to compute expected lifelength of this system, among
other things.

Weibull(1, 0.5)

Weibull(1, 0.5)

Weibull(1, 0.5)

exp(0.5)

Figure 1: The simple biological system examined in this section

1.1 Expected biological life length

For the first part of the system, we have a biological survival function (1−(1−RW (t))3),
where RW (t) = 1 − FW (t) and FW (t) is the Weibull(1,12 ) distribution function. The
second part contributes a factor Re(t) = 1 − Fe(t), where Fe(t) is the exp(1

2) distribu-
tion function. Multiplying these gives us the biological survival function for the whole
system:

R(t) = Re(t)
(

1 − (1 − RW (t))3
)

= (1 − Fe(t))
(

1 − FW (t)3
)

We can then use this biological survival function to calculate the expected biological
life length easily, using the identity given in Theorem 6.3 of the assignment:

E{T} =

∞
∫

0

R(t) dt =

∞
∫

0

(1 − Fe(t))
(

1 − FW (t)3
)

dt =

∞
∫

o

e−
t
2

(

1 −
(

1 − e−
√

t
)3

)

dt

Clearly, this is no integral we want to calculate analytically, at least not by hand.
While it can be calculated analytically, the indefinite integral contains three instances
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of the error function and is very messy. Even the definite (improper) integral looks
horrible in its analytic form:

∞
∫

0

R(t) dt = − 3
√

2eπerfc

(

1√
2

)

− 3e2
√

2π

(

e5/2erfc

(

3√
2

)

− 2erfc
(√

2
)

)

+ 2

It should be noted that this integration was performed in Mathematica, along with
a proper evalution of the error function to recieve a numerical value of the expected
biological life length:

In[1]:= R[t_] := Exp[-t/2](1-(1-Exp[-Sqrt[t]])^3)

In[2]:= Integrate[R[t], {t, 0, Infinity}]

Out[2]= (* See equation *)

In[3]:= N[%]

Out[3]= 1.29481

Thus, the expected biological life length of this small system is 1.2948 time units.
It may also be of interest to know wether this system is BIBFR, BDBFR, or neither.

To find this out, we simply plot the biological death rate, given by r(t) = d
dt ln(R(t)).

This function, like R, can be expressed analytically, but it’s just as messy — we’ll be
happy to simply plot it:

In[4]:= r[t_] := -D[Log[R[t]]]

In[5]:= Plot[r[t], {t, 0, 10}]

Out[5]= -Graphics-

In[6]:= Export["fig1.eps", %]

Out[6]= fig1.eps

As seen in Figure 2, the biological death rate is steadily increasing (and almost lin-
early so). This is not surprising, given the exponential nature of R(t) and the logarithm
included in r(t). We can conclude that this biological system is BIBFR.

1.2 Component death

Continuing to examine the same biological system, we may also want to know what
componens are most likely to break. Specifically, we may be interested in the probability
that the last component (the exp(1

2 )-distributed one) is the component that causes the
system to fail. This probability is equivalent to the probability that at least one of the
other three componens survive longer than the one we’re interested in, since they’re
parallel coupled:

P{Component 4 causes biological death} = P{max(T1, T2, T3) > T4},
where Ti is the biological lifelength of component i.

We can also rewrite this probability to something slightly more useful, making use
of basic probability distribution theory (transforming it into an integral containing the
probability distribution function of the fourth component, as opposed to the cumulative
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Figure 2: The biological death rate r(t) of the first biological system

distribution function) and the fact that the only probability left in the expression is

subject to the equality P{max(T1. . .Tn) > t} = (1 −
n
∏

i=1
FTi

):

P{max(T1, T2, T3) > T4} =

∞
∫

0

P{max(T1, T2, T3) > t}fT4
(t) dt

=

∞
∫

0

(1 − FT1
(t)FT2

(t)FT3
(t)) fT4

(t) dt

=

∞
∫

0

(

1 − (FW (t))3
)

fe(t) dt

=

∞
∫

0

(

1 −
(

1 − e−
√

t
)3

)

e−
t
2

2
dt

Again, using the notation that FW (t) is the cumulative distribution function of the
Weibull(1,12 ) distribution, and fe(t) is the probability distribution function of the exp(1

2 )
distribution. This is also an ugly integral, best left in the capable hands of Mathematica:

In[7]:= Integrate[((1-(1-Exp[-Sqrt[t]])^3)*Exp[-t/2]/2),

{t, 0, Infinity}]

Out[7]= (* Analytic and somewhat uninteresting answer *)

In[8]:= N[%]

Out[8]= 0.647406

Thus, the probability that component four is the component that causes biological
death is approximately 65%. Hence, it would probably be of interest to add a (warm
or cold) biologically redundant component parallel to that component.
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1.3 Introducing redundancy
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Figure 3: The system after the addition of a redundant component

To reduce the system’s dependency on component four, one can couple it with a
(warm or cold) biologically redundant component, perhaps of the exact same type (i.e.
same distribution) as the existing one (see Figure 3). This is not difficult: all that is
required is a modification of the biological survival function:

Rw(t) =
(

1 − (1 − RW (t))3
)

P{max(T1, T2) > t}
=

(

1 − FW (t)3
) (

1 − Fe(t)
2
)

=

(

1 −
(

1 − e−
√

t
)3

)(

1 −
(

1 − e−
t
2

)2
)

Rc(t) =
(

1 − (1 − RW (t))3
)



1 −
∞
∫

0

(1 − RT1
(t − x)) RT2

(x)rT2
(x) dx





=
(

1 − FW (t)3
)





∞
∫

0

Fe(t − x) (1 − Fe(x)) fe(x) dx





=

(

1 −
(

1 − e−
√

t
)3

)



1 −
∞
∫

0

(

1 − e−
t−x
2

)

e−
x
2
e−

x
2

2
dx





=

(

1 −
(

1 − e−
√

t
)3

)



1 − 1

2

∞
∫

0

e−x − e−
t+x
2 dx





=

(

1 −
(

1 − e−
√

t
)3

)(

1

2
+ e−

t
2

)

Here, T1 and T2 are the life lengths of the (now two) exponentially distributed
components. Further, Rw represents the survival function of the system with a warm
biologically reduntant component added, while Rc represents the system with a cold
equivalent. Using these two definitions, we can define the appropriate death intensities
rw and rc, to compare the two (hopefully) improved systems to the original one. Again,
we’ll let Mathematica do the dirty work for us:

In[9]:= Rw[t_] := (1-(1-Exp[-Sqrt[t]])^3)(1-(1-Exp[-t/2])^2)
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In[10]:= Rc[t_] := (1-(1-Exp[-Sqrt[t]])^3)(1/2+Exp[-t/2])

In[11]:= rw[t_] := -D[Log[Rw[t]]]

In[12]:= rc[t_] := -D[Log[Rc[t]]]

In[13]:= Plot[{r[t], rw[t], rc[t]}, {t, 0, 10}]

Out[13]= -Graphics-

In[14]:= Export["fig2.eps", %]

Out[14]= fig2.eps

As seen in Figure 4, these modifications change the death rate significantly. The
warm redundant component reduces death rate over the whole time period, although
not significantly; the cold redundant component reduces death rate significantly, even
achieving a negative death rate for t < 1. Clearly, the cold redundant component does
a much better job than the warm one.

Frankly, this is not a surprise; if a component is being used, it is a risk of biological
failure. Cold redundant components postpone usage until the latest possible moment,
thus postponing component failure as much as possible. While this has a clear advan-
tage, a warm redundant component is easier to “implement”, since the biological system
won’t have to keep track of the state of the original component — it’s a simple matter
of starting everything at once.
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Figure 4: Biological death rates r(t), rw(t) and rc(t)

1.4 Improved biological components

Another possibility when it comes to both reducing death rates and increasing the
expected life length is to replace failure-prone components with better ones. Here, we
will experiment with replacing the fourth component with one of an exp(ρ) distribution,
where ρ < 1

2 , and compare the results to both the cold and warm redundant component
solution. A reduced parameter to the exponential distribution could be interpreted as
a reduced failure rate, or an increase in mean value (and therefore life length of the
component).
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We start by calculating the expected life length using Rw(t) and Rc(t) (naming
these Ew and Ec, respectively), so that we have values to compare to, and then set up a
function R(t, ρ) from which we can compute the expected life length depending on this

new variable ρ, along with a corresponding function E(ρ) = E{T |ρ} =
∞
∫

0

R(t, ρ) dt. We

then plot E(ρ) for 0 < ρ < 1
2 :

In[15]:= Etw := Integrate[Rw[t], {t, 0, Infinity}]

In[16]:= Etc := Integrate[Rc[t], {t, 0, Infinity}]

In[17]:= R[t_, rho_] := Exp[-t*rho](1-(1-Exp[-Sqrt[t]])^3)

In[18]:= Erho[rho_] := Integrate[R[t, rho], {t, 0, Infinity},

Assumptions -> rho >= 0]

In[19]:= Plot[{Erho[rho], Etw, Etc}, {rho, 0, 1/2}]

Out[19]= -Graphics-

In[20]:= Export["fig3.eps", %]

Out[20]= fig3.eps

As can be seen in Figure 5, the system’s expected life length improves as ρ gets
smaller — it is better than the warm redundant component for ρ < 0.29, while it doesn’t
outperform the cold redundant component until ρ < 0.04. This further illustrates the
power of a cold redundant component; it is a very effective way to improve the expected
life length of a system, given that it is coupled with the “worst” component.
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Figure 5: The expected life length E(ρ) compared to the expected life length using a
warm (Ew) and cold (Ec) redundant component

2 Introducing biological cost

It is obvious that one cannot choose biological components at will — more durable
components are bound to be more difficult to produce or unattainable in some other
way. To simulate this, we can introduce biological cost.
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Consider the system in Figure 6, where µ and λ are variables related to the biological
cost: each componens has an incurred cost of 1/5 + 1/γ, where γ is the corresponding
parameter of its biological distribution.

Weibull(µ, 1/3)

Weibull(c, 1/3)

Weibull(c, 1/3)

Figure 6: The variable biological system — note that c is referred to as λ in the text

Obviously, one wants to minimize biological cost while still maximizing the expected
life length of the system. Since it is difficult to maximize one parameter while minimizing
another, a better approach is to fix the total biological cost and maximize life length
with respect to this. In order to to so, we first establish a relation between µ, λ and the
total cost C:

C(µ, λ) =
3

5
+

1

µ
+

2

λ

Next, we set up the expected life length El(µ, λ), dependent on the two parameters
µ and λ. We start by setting up the biological survival function R(t, µ, λ), using it to
express E(µ, λ):

R(t, µ, λ) = Rµ(t)
(

1 − (1 − Rλ(t))2
)

= (1 − Fµ(t))
(

1 − Fλ(t)2
)

= e−(3t)µ

(

1 −
(

1 − e−(3t)λ
)2

)

El(µ, λ) = E{T |µ, λ} =

∞
∫

0

R(t, µ, λ) dt =

∞
∫

0

e−(3t)µ

(

1 −
(

1 − e−(3t)λ
)2

)

dt

In order to let Mathematica take care of these horrible things, we set up µ, R(t, µ, λ)
and El(µ, λ) as Mathematica functions:

In[1]:= Cost[mu_,lambda_] := 3/5 + 1/mu + 2/lambda

In[2]:= R[t_,mu_,lambda_] := Exp[-(3t)^mu](1-(1-Exp[-(3t)^lambda])^2)

In[3]:= El[mu_,lambda_] := NIntegrate[R[t,mu,lambda], {t, 0, Infinity},

MaxRecursion->20, AccuracyGoal->8]

Our task is now to maximize El(µ, λ) for some different maximum values of C, say
Cmax = 1, 2, . . .10. For this, we can use Mathematica’s FindMaximum function with
the constraint that C(µ, λ) = Cmax, for example by generating a table containing the
optimum values of µ and λ for each Cmax:
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In[4]:= results = Table[{m,l}/.Last[FindMaximum[{El[m,l],

Cost[m,l]==c,m>0,l>0},{m,l}]],{c,1,10}]

Out[4]= (* List of output values *)

All that is left now is some kind of visualization of our data. We’ll need to plot
the life lengths to get a feel for the general trend, but we also need a table to properly
display full data. We can generate the plot in Mathematica:

In[5]:= Els = El@@@results

Out[5]= (* List of output values *)

In[6]:= ListPlot[Els, Filling -> Axis, AxesOrigin -> {0,0}]

Out[6]= -Graphics-

In[7]:= Export["fig4.eps", %]

Out[7]= fig4.eps

The results (seen in Table 1 and Figure 7) indicate that an increased investment,
i.e. increased maximum biological cost, will also result in an increased life length. The
decline for 2 ≤ Cmax ≤ 7 does not contradict this; since we constrained the algoritm
to only consider µ and λ satisfying C(µ, λ) = Cmax, we are in effect requiring that we
spend all biological monetary units available to us — there is of course no harm in
using less funds than we have, and we can therefore select the Cmax = 1 solution for
2 ≤ Cmax ≤ 7 as well.

Table 1: Actual values of µ, λ and El(µ, λ) for different values of Ctot

Ctot µ λ El(µ, λ)

1 39.2745 5.2759 0.3146
2 42.0501 1.4532 0.2866
3 41.7723 0.8417 0.2687
4 36.2571 0.5930 0.2561
5 0.6863 0.6796 0.2269
6 0.5067 0.5838 0.2446
7 0.4123 0.5032 0.2758
8 0.3511 0.4394 0.3227
9 0.3073 0.3886 0.3900
10 0.2741 0.3477 0.4854

We can also note that µ and λ, while both decreasing (almost) monotonically, don’t
decrease in proportion to each other. For small values of Cmax, µ is much larger than
λ — this indicates that decreasing λ has a bigger effect than decreasing µ, which is
counter-intuitive. When Cmax gets larger, the reductions of λ start pushing the limit,
and reducing µ becomes a more feasible solution; when the life length starts increasing
again µ is smaller than λ. This makes sense as the single, uncoupled component is
the one that has the largest impact in situations when all component are so similarly
distributed as in this system.

The result is to be expected; since an increased cost implies a smaller value of µ
and/or λ, it also implies (due to how the Weibull distribution behaves) that the failure
rate increases less over time. In fact, for values of these parameters less than one, the
failure rate decreases over time; for values larger than one the rate increases.
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Figure 7: The expected life length of the optimal system with increasing biological cost

2.1 Technical difficulties

One should also comment on the optimization process itself; since it consists of a large
number of numerical integrations (one for each evaluation FindMaximum does) ompti-
mizing El(µ, λ) is both computationally unstable, and in some cases unstable.

To get any sensible results, the integration method had to be instructed to double
its maximum recursion level and its accuracy goal to remedy the issues that occur when
the integration result is very close to 0. This is because Mathematica’s NIntegrate

function uses relative tolerance as a measure of accuracy, making integrals close to 0
difficult to compute.

Of course, this has a downside; the result is (possibly much) less accurate. This,
along with the fact that FindMaximum only aims to find local maxima, as opposed to
NMaximize that finds global maxima, makes the result somewhat unreliable.
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