
Laboration: Simulation of Stochastic Processes

Simon Sigurdhsson

October 13, 2010

Abstract

Stochastic processes are a good way of describing many everyday processes deal-
ing with arrivals and departures of various things: a queue at the supermarket, the
number of cars on a bridge, and in some respects even our written language. It is
therefore of interest to be able to simulate these processes.

1 Choice of language

For this assignment, I have been working with the statistical software R. It is closely
related to S+, and is, like S+, an implementation of the S programming language devel-
oped at Bell Laboratories. R was chosen because of its ease of use, statistical packages,
and availability (being both free and installed on the Chalmers remote servers). It is
also very lightweight, compared to MATLAB, while still performing the tasks required
in this assignment.

2 Vehicles on a bridge

Let us define a shot noise process X(t), which can be thought of as a model of the
number of vehicles on a bridge, when vehicles arrive with interarrival times exp(1)-
distributed (thus arriving according to a Poisson process) and the bridge takes 1

2 time
units to cross:

g(t) =











0, t < 0

1, 0 ≤ t ≤ 1
2

0, 1
2 < t

Using R, we can simulate and plot X(t), to get a better idea of how the process
behaves:

g <- function(t) {

ret <- as.numeric(t >= 0 & t <= 0.5)

ret

}

xi <- rexp(50); xi <- xi[cumsum(xi) <= 10]

nu <- rexp(length(xi)); nu <- nu[cumsum(nu) <= 0.5]

t <- seq(0, 10, by=.01); X1 <- 0; X2 <- 0

for(k in 1:length(xi)) { X1 <- X1 + g(t-sum(xi[1:k])) }

for(k in 1:length(nu)) { X2 <- X2 + g(t+sum(nu[1:k])) }

1

if(length(nu) == 0) X2 <- as.numeric(!is.na(X2))

X <- X1 + X2

postscript("fig1a.eps")

plot(t, X); dev.off()

The result of this simple simulation can be seen in figure 1. As you can see, arrivals
occur randomly and cause an “elevation” for 1

2 time units. In this particular run, there
are at most 2 cars on the bridge at any given time (i.e. max X(t) = 2).

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

t

X

Figure 1: A simulation of the stochastic process X(t)

It may also be of interest to calculate the probability that there are, say, n or more
vehicles on the bridge for some suitable value of n. To do this (here, we set n = 3) we
can perform a large number of simulations (here, 10 000) accordning to the Monte Carlo
principle, and then simply calculate the probability (with a given confidence interval,
say 99%). To do this, we use the following R program:

p <- c()

for(i in 1:10000) {

xi <- rexp(50); xi <- xi[cumsum(xi) <= 10]

nu <- rexp(length(xi)); nu <- nu[cumsum(nu) <= 0.5]

M <- c(); e <- FALSE;

for(k in 1:length(nu)) { M <- c(M, -sum(nu[1:k])) }

for(k in 1:length(xi)) { M <- c(M, sum(xi[1:k])) }

M <- sort(M[-0.5 <= M & 10 >= M], TRUE)

if(length(M)>=3) {

for(a in 1:(length(M)-2)) {

for(b in 2:(length(M)-a)) {

if((M[a]-M[a+b]) <= 0.5) e <- TRUE

}

}

2

}

p <- if(e) c(p,1) else c(p,0)

}

pm <- mean(p)

cil <- qnorm(0.995)*sd(y)/sqrt(10000)

ci <- c(pm-cil, pm+cil)

The code above exploits the fact that, according to the Central Limit Theorem,
p will be approximately N(µ, σ√

n
) as n gets large, where µ is the sample mean and

σ the sample standard deviation. We can thus calculate the confidence interval as
µ ± Φ−1(1 − α/2) σ√

n
.

It also takes advantage of the fact that X(t) ≥ 3 for some t if and only if there exists
certain numbers m1,m2,m3 ∈M (whereM is given by M in the above listing) such that

−1

2
≤ m1 < m2 < m3 ≤ 10, m3 − m1 ≤ 1

2
.

Given this setup, we have a 99% confidence interval of 0.4984± 0.0129. What we in
essence are doing is to simulate a random variable ζ, which is 1 if the given condition
(i.e. max X(t) ≥ 3) holds and 0 otherwise, and calculate the expected value (sample
mean) and a confidence interval with 10 000 simulated samples.

3 A stationary Gaussian process

Let’s say we have a stationary Gaussian process given by

X(t) =

∞
∫

−∞

f(t + s)dW (s),

f(t) =

{

1 − t2, |t| ≤ 1

0, |t| > 1

where W (s) is a Wiener process. It might be interesting to plot a simulation of this
process, to see how it behaves. Though the integral may look like it’s hard to compute,
we’re in luck — it can be approximated by a sum:

X(t) =

∞
∫

−∞

f(t + s)dW (s) = lim
n→∞

s(n)
∑

−s(n)

f

(

t +
k

n

)(

W

(

k + 1

n

)

− W

(

k

n

))

This reduces our problem significantly; we can now simply generate a suitable num-
ber of samples of the Wiener process, and apply the sum to these samples. To generate
samples from the Wiener process, we first generate 2n + 1 samples with an N(0, 10

n
)

distribution, and calculate the cumulative sum of these. This gives us a Wiener process
for t ∈ [−10, 10]. In R, with n = 10000:

f < - function(t) {

r < - 1-t^2

r[abs(t) > 1] < - 0

3

r

}

n < - 10000

t < - seq(0, 10, 10/n)

N < - rnorm(2*n+1, 0, 10/n)

W < - cumsum(N)

sums < - seq(-n, n, 1)

X < - c()

for(k in t) {

step < - sum(f(k+sums/sqrt(n))*(W[(sums+1)/sqrt(n)-sums[1]]

+ -W[sums/sqrt(n)-sums[1]]))

X < - c(X, step)

}

postscript("fig2.eps")

plot(t, X); dev.off()

We set s(n) = n2 (or rather, n inside the sum to
√

n) to satisfy the condition

lim
n→∞

s(n)
n

= ∞. The result can be seen in Figure 2a, and it’s quite interesting. It is also

interesting to compare the result to the plot of 1 − t2, (Figure 2c) and the underlying
Wiener process (Figure 2b).

We can see that when the Wiener process grows very large (around t = 5) the
stationary process tends to 0 — understandably, as f does the same thing. We can also
see that the process reaches its largest values when the underlying Wiener process is
close to 0 but slightly off. This is also to be expected, since f then is large, while the
Wiener process itself provides a sign (and scales X(t) down). As the figure shows, X(t)
lies between ±0.0015, while W (t) lies between ±0.1.

0 2 4 6 8 10

−
0.

00
15

−
0.

00
10

−
0.

00
05

0.
00

00
0.

00
05

0.
00

10
0.

00
15

t

X

(a) The Gaussian process X(t)

0 2 4 6 8 10

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

seq(0, 10, 10/(2 * n))

W
[s

eq
(0

, 2
 *

 n
 +

 1
, 1

)]

(b) The underlying Wiener process W (t)

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

(c) The function used, f(t) = 1 − t2

4

