
Laboration: Monte Carlo Integration

Simon Sigurdhsson

October 5, 2010

Abstract

The Monte Carlo method, a general method based on generating a large num-
ber of samples to approximate expected values and errors, can be applied when
approximating integrals. While this is most effective in higher dimensions, it can
also be useful in the one-dimensional case.

1 Approximating π

Calculating π can be done in a number of different ways; one way is to use the integral
below, derived from the derivative of the inverse tangent function, tan−1:

1
∫

0

4

1 + x2
dx = 4

[

tan−1(x)
]1

x=0
= 4 tan−1(1) = 4

π

4
= π

To obtain an approximative value of π using this integral, we must compute it
numerically. There are many methods to compute integrals numerically — some of
them approximate the integral with Riemann sums (or variants of them, as done in the
trapezoid method), others use polynomial interpolation. These methods can be very
computationally expensive if high accuracy is required.

Another method of approximating integrals is using stochastic methods, approxi-
mating the integral with a sum of random variables. This method, often referred to as
the Monte Carlo integration method, is derived from the expected value of a function
g, given that its argument is a random variable from a continuous distribution f :

E{g(x)} =

∫

g(x)f(x)dx

Now, suppose we have a function f that we want to integrate over the interval [0, 1].
We have the following integral:

1
∫

0

f(x) dx

This integral can be interpreted as the expectation E{f(X)} of the random variable
f(X), where X is uniformly distributed over [0, 1]. Hence, we can approximate the
expected value by the sample mean of a number of simulated samples of f(X):

1



1
∫

0

f(x) dx ≈ 1

n

n
∑

i=1

f(xi)

Our computationally expensive integration has now been reduced to generating a
sample of n uniformly distributed variables and calculating the sample mean, which is
comparatively easy.

By the law of large numbers, our sample mean must converge toward the true value
of the integral as n → ∞. In real-world applications, generating an infinite number of
random variables is of course impossible. Thus, it is of interest to be able to calculate
the expected error of our estimation (or indeed the variance).

After some fiddling around with the Central Limit Theorem, and the variance of
normally distributed random variables, we arrive at the conclusion that the error can
be estimated by σ (here, E is the approximated value given by the sum above):

σ2(f) =
1

n

n
∑

i=1

f(xi)
2 − E2

∼ n−1

The advantage of Monte Carlo integration is both its relatively inexpensive compu-
tation costs, and its relatively constant error: the error when using the Monte Carlo
method is approximately O(n−1/2), where n is the number of samples.

1.1 A MATLAB simulation

Now, using the Monte Carlo method to actually approximate π will be child’s play —
in MATLAB, we can do it in just a few lines (along with an error estimation):

n = 10000;

x_i = rand(1, n);

fx_i = 4./(1+x_i.^2);

approx_pi = sum(fx_i)/n

error = sqrt((sum(fx_i.^2)/n-approx_pi^2)/n)

This yields the fairly accurate result π = 3.14 ± 0.0064 — the estimated error of
0.0064 is fairly large compared to the actual error of 0.0016. For higher accuracy, we
can increase n; performing the same computation with n = 108 yields a more accurate
result of π = 3.1417 ± 6 · 10−5 (rounded). Compared to the real error of 8 · 10−5, this is
fairly spot-on. Hence, we can conclude that the error estimate is very accurate.

1.2 Reducing variance

To reduce the variance (and hence improve the accuracy of our approximation), several
methods may be applied; among those are stratified sampling, importance sampling,
control variates and antithetic variates. Theoretically, some of these could be combined
to produce even better results.

2



1.2.1 Stratified sampling

Stratified sampling is in effect a division of the integral; integrating over several different
intervals and summing these to obtain the actual value of the original integral. This
way, we can concentrate on more difficult areas of the integral and approximate these
more closely. In our case, we may divide the interval [0, 1] into smaller sub-intervals
M1, . . .,Mk. For each of these smaller intervals Mj, we generate nj random variables
with a uniform distribution over that interval. We can then calculate the expected value
as

k
∑

j=1

vol(Mj)

nj

nj
∑

i=1

f(xij),

where vol(Mj) is the volume of the interval (or set) Mj . The error estimation is
somewhat more involved:

σ =

√

√

√

√

k
∑

j=1

vol(Mj)2

nj
σ2

Mj
(f)

Here, σ2
Mj

(f) is the approximation error on the sub-interval Mj , given by

σ2
Mj

(f) =







1

vol(Mj)

∫

Mj

f(x)2 dx −







1

vol(Mj)

∫

Mj

f(x) dx







2




.

Stratified sampling performs best when nj is selected so that it is proportional to
the total error on the corresponding interval, given by vol(Mj)σMj

(f). Thus, if we run
our simulation once with nj = 1, ∀j, we can calculate more suitable values for nj .

All this may look terribly involved, but even with arbitrarily chosen intervals and
varying values, the MATLAB code is fairly simple:

n_j = [3.9 3.9 3.8 3.8 3.7 3.6 3.4 2.9 2.4 2.9] * 10000;

volM_j = [0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.2 0.2 0.2];

x_ij = rand(length(n_j), max(n_j)).*repmat(volM_j, max(n_j), 1)’ ...

+ repmat(cumsum([0 volM_j(1:(end-1))]), max(n_j), 1)’;

for i=1:length(n_j)

x_ij(i, n_j(i):end) = -Inf;

end

fx_ij = 4./(1+x_ij.^2).*(x_ij ~= Inf);

sigma2_Mj = 1./volM_j.*(1./n_j.*(sum(fx_ij’.^2))) ...

- 1./volM_j.*(1./n_j.*(sum(fx_ij’))).^2;

approx_pi = sum(volM_j./n_j.*sum(fx_ij’));

error = sqrt(sum(volM_j.^2./n_j.*sigma2_Mj));

good_nj = volM_j.*sqrt(sigma2_Mj);

Emphasis here is put on the first half of the interval. The values for nj have been
obtained by first doing a run with nj = 1, and simply looking at the good nj variable.
Note that we pad the matrix x ij with −∞ where the matrix is wider than the number

3



of random samples; this does not affect the final result (since we filter out those values
from fx ij).

Using this method, an approximation of π = 3.1412 ± 0.0006 was obtained. A few
similar interval divisions repeatedly return an error estimate around 0.0005. This is
clearly an improvement from before, and given that the actual error (0.0004) is much
smaller than that of the original approximation (0.0016) this method is something you
should consider. It is fairly easy to implement in MATLAB as well (although gets more
complex in a low-level language such as C).

1.2.2 Importance sampling

The next method, importance sampling, relies on the fact that

∫

f(d) dx =

∫

f(x)

p(x)
p(x) dx.

Hence, if p(x) is a probability density function and our random samples xi are
generated from the corresponding distribution, we can approximate the integral using
the following, modified mean:

1

n

n
∑

i=1

f(xi)

p(xi)

The optimal selection of p(x) is a distribution as close to f as possible — if p ≡ f ,
this sum will be equal to 1, and thus the error (again estimated by σ) will sum to
zero. This is to be expected, since we are in fact calculating the expected value of the
(non-)random variable 1, given a probability distribution function p(x). Since 1 isn’t a
random variable, it’s expectation value will be 1 and its variance will be 0.

Given our function, the Cauchy(0, 1) distribution (basically only differing from our
function by a factor 4π) would be a good candidate. However, since its support is
(−∞,∞), we’d in effect be integrating on that interval. We need a probability distribu-
tion with support over [0, 1]. The only other requirement of this probability distribution
is that

1
∫

0

p(x) dx = 1

Given our function (seen as the blue curve in Figure 1) and the form of our function
f , the Cauchy(0, 1) distribution (seen as the red curve in Figure 1) seem like a good
choice — but its support is (as said above) the whole real line. We do however note
that

1
∫

0

1

π(1 + x2)
dx =

1

4
,

which implies that we can construct a probability distribution by multiplying the
Cauchy distribution. We will then have a probability distribution with support on [0, 1]:

p(x) =
4

π(1 + x2)

4



This is pretty similar to our function f . In fact, the two differ only by a factor of
π (as expected). This is further illustrated by the green curve in Figure 1, which is the
Cauchy(0, 1) distribution multiplied by 2π. Note how it is approaching our function f .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: The integrand (blue), Cauchy pdf (red), and the m-Cauchy pdf (green).

Let us then define a probability distribution, based on p(x) given above, and let’s
call it the m-Cauchy distibution:

Cm(x) =

{

4
π(1+x2)

, 0 ≤ x ≤ 1

0, otherwise

Our concern now is generating random samples with the m-Cauchy distribution.
There is (understandably) no standard function to do this in MATLAB, so we have to
resort to a simulation of random variables — we will have to feed uniformly distributed
samples to the generalized right-inverse F←. The m-Cauchy distribution has a well-
defined inverse (easily calculated analytically), so we’ll use it:

F−1(x) = tan

(

π

4

(

x − 1

2

))

Of course, we have to change our sample mean to match our new sum, given by
f(x)/p(x). We’ll see that it reduces quite nicely to π:

1

n

n
∑

i=1

4
1+x2

4
π(1+x2)

=
1

n

n
∑

i=1

π(1 + x2)

1 + x2
=

1

n

n
∑

i=1

π = π

In this case we’ve obviously reached a dead-end: we now need to use the actual
value of π to calculate the value of π, which of course is quite bad. However, we’ve

5



reached a point where the variance is exactly zero for any r.v. input. There are of
course distributions for which this method, along with this integral, doesn’t end with
a constant value — but those are far worse fiting and may very well result in a larger

error.

1.2.3 Control variates

Introducing a function g similar to f , with a known integral value G, we can rewrite
our initial integral as follows:

∫

f(x) dx =

∫

(f(x) − g(x)) dx +

∫

g(x)dx =

∫

(f(x) − g(x)) dx + G

The idea is that if we have a smaller integral to approximate, we will have a smaller
error. The Monte Carlo approximation can now be written as:

1

n

n
∑

i=1

(f(xi) − g(xi)) + G

The error is still estimated as in the unmodified Monte Carlo method, with the
exception that G is not included anywhere in the calculations. Our first task when
using control variates is thus to find a function g that is both close to f and has a
known value. In our case, we should also make sure that it does not contain π itself.
We find that the following function may be a good candidate:

g(x) =
4

(1 + x)2)
, G = 2

Based on this, and the MATLAB code from our first attempt, we can construct a
Monte Carlo integration with control variates like this:

n = 10000; G = 2;

x_i = rand(1, n);

fx_i = 4./(1+x_i.^2)-4./((1+x_i).^2);

approx_pi = sum(fx_i)/n + G

error = sqrt((sum(fx_i.^2)/n-(approx_pi-G)^2)/n)

As expected, this variant produces much better results than the approximation
before control variates; our approximation is now π = 3.1415 ± 0.0032, with an actual
error of only 0.0001! Increasing n to 108 as before produces even better results; the
estimated error and the real error are both now approximately 3 · 10−5 — which is very
good.

1.2.4 Antithetic variates

Antithetic variates rely on the fact that the variance of the sum of two negatively
correlated random variables should be small, since the covariance effectively reduces
the variance sum:

Var{f1 + f2} = Var{f1} + Var{f2} + 2Cov{f1, f2}

6



Hence, if we use the random variables xi and 1 − xi, which are both random and
negatively correlated, we can instead approximate our integral with the mean of the
sample mean of these two correlated variables:

1

2n

(

n
∑

i=1

f(xi) +
n
∑

i=1

f(1 − xi)

)

The error is calculated as before. This translates very well to our MATLAB code:

n = 10000;

x_i = rand(1, n);

fx_i = 4./(1+x_i.^2);

fx_i2 = 4./(1+(1-x_i).^2);

approx_pi = (sum(fx_i)+sum(fx_i2))/(2*n)

error = sqrt(((sum(fx_i.^2)+sum(fx_i2.^2))/(2*n)-approx_pi^2)/(2*n))

Unfortunately, this does not improve the result significantly; the approximation
using this method is π = 3.1416± 0.0045, with a real error of 6 · 10−6. Compared to the
original result, the actual error has decreased, while the estimated error has increased.

A disadvantage of this method is that it can only be used on monotone functions f .
This makes it fairly useless in a lot of cases.

1.3 Better performance using C

Using C, a lower-level language with no matrix manipulation capabilities, we’re forced
to use a classic for-loop. The relevant parts of the C code are as follows (note that it
has to be compiled in C99 mode with GNU extenstions, i.e. -std=gnu99):

int n = pow(10, 8);

double approx_pi, error_term, error, x, y;

double exact_pi = 3.14159265;

srand48(time(NULL));

for (int i = 0; i <= n; i++) {

x = drand48();

y = 4 / (1 + x * x);

approx_pi += y;

error_term += y * y;

}

approx_pi = approx_pi / n;

error = sqrt((error_term / n - pow(approx_pi, 2)) / n);

Those versed in both C and MATLAB will see that this is basically the same thing,
except it has been converted into a for-loop. This code (expectedly) yields pretty much
the same results as the MATLAB version: an approximation of π = 3.141569±0.000064;
the real error is now 0.000034. This is of course without any variance-reducing methods.

One should comment on the efficiency of these solutions; the MATLAB solution
(which is pretty much the fastest you’ll get in MATLAB, given that it uses matrix
manipulation exclusively) runs in around 3.5 seconds. The C version however runs in
roughly 2.2 seconds — a significant improvement of almost 40%! This showcases the
strength of low-level languages: they almost always perform better.

7



2 A quite irregular function

One strength of Monte Carlo integration is that it isn’t too bothered by very irregular
functions. Take for example the integral of the (almost) Brownian motion:

1
∫

0

(

n
∑

k=0

√
8

π

sin(1
2 (2k + 1)πt)

2k + 1
nk

)

dt

Where {nk}n
k=1 is independent and N(0, 1)-distributed. When n → ∞, this is

Brownian motion; known to be continuous but not differentiable in any single point on
the interval [0, 1].

Translating this to C to approximate it using Monte Carlo integration is not difficult;
we begin by generating a suitable number of normally distributed values nk, since these
should be constant during integration:

double nk[N];

srand48(time(NULL));

for (int i = 0; i < N; i++)

nk[i] = sqrt(-2*log(drand48()))*cos(2*M_PI*drand48());

The normally distributed variable is generated from two uniformly distributed vari-
ables η and ξ using the relation Z =

√

−2 ln(η) cos(2πξ). After this, we simply perform
the Monte carlo approximation (with 108 samples):

int n = pow(10, 5);

double approx_B, error_term, error, x, y;

for (int i = 0; i < n; i++) {

x = drand48();

y = 0;

for (int k = 0; k < N; k++) {

y = y + sin((M_PI * x)*(2*k + 1)/2);

y = y * nk[k] / (2*k + 1);

}

y = y * sqrt(8)/M_PI;

approx_B += y;

error_term += y * y;

}

approx_B = approx_B / n;

error = sqrt((error_term / n - pow(approx_B, 2)) / n);

With N = 1000, the approximated value is −0.6997. The error is 347, which is very

large. Applying one of the variance-reducing methods is clearly of interest — but which
one?

We can’t apply anithetic variates, since the function isn’t monotone, and we don’t
want to apply importance sampling, since it’s very hard to find a distribution close
to our function. Stratified sampling won’t improve the situation significantly, since the
function looks pretty much the same over the whole interval (i.e. there is no sub-interval

8



that would benefit from a smalle interval). Left now is control variates. Using those
would require us to find a function g that is both close to f and has a known integral
value. This is also very difficult, although we recognize the integral as (at least being
similar to) a fourier series with stochastic coefficients nk.

The large error is to be expected of such an irregular and stochastic function.

3 Expected shortfalls

The expected shortfall E{SX(u)}, given by E{SX(u)} = E{X|X > u}, can be approx-
imated using the Monte Carlo method. In the case given, where we have X = Y Z and
Y = Bernoulli(p), Z = exp(λ) we can simply generate a large number of samples from
Y and Z, multiply these and calculate the sample mean. To include the constraint
X > u, we simply discard all samples less than u. So, if we have n samples, and m of
those satisfy xi > u, (m), we can approximate the expected shortfall:

E{SX(u)} ≈ 1

m

m
∑

i=0

f(xi), f(xi) =

{

xi, xi > u

0, xi ≤ u

The error is approximated in a similar way by calculating the square root of the
sample variance:

σ =
√

V{SX(u)} =
√

E{X2} − E{X}2 ≈

√

√

√

√

1

m

m
∑

i=0

f(xi)2 −
(

1

m

m
∑

i=0

f(xi)

)2

The issue now is generating the random samples yi and zi. Fortunately, the ex-
ponential distribution has a well-defined inverse, and the Bernoulli distribution has a
simple generalized right-inverse. We can thus sample yi and zi like this, assuming ξ is
a random variable with uniform distribution over [0, 1]:

yi(ξ) =

{

0, ξ < p

1, ξ ≥ p

zi(ξ) =
− ln(1 − ξ)

λ

Keep in mind that these should be independently generated. Thus, if we want
to generate xi directly we must use two random variables ξ and η, both uniformly
distributed over [0, 1], before finally calculating the sample xi = yi(ξ)zi(η). Doing all
this in C is fairly straight-forward:

int n = pow(10, 8);

int m = 0;

double shortfall, error, error_term, x;

double p = 0.1;

double invlambda = 3.4;

double u = 10;

srand48(time(NULL));

9



for (int i = 0; i < n; i++) {

x = -log(1-drand48())*invlambda;

if(drand48() >= p && x > u) {

shortfall += x;

error_term += x * x;

m++;

}

}

shortfall = shortfall / m;

error = sqrt((error_term / m - pow(shortfall, 2)) / m);

Here, we are using the given values p = 0.1, 1/λ = 3.4 and u = 10. Running this
yields an approximated shortfall of 13.397956±0.001558, which is (if the error estimate
is to be trusted) a very good approximation. Variance reduction methods could be
applied if a more accurate result is required; antithetic variates would possibly be a
good candidate here, but given the small error, this is not necessary.

10


