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Abstract

Analyzing stock data and optimizing a portfolio using the statistical tools avail-
able in MATLAB and Mathematica, given historical data and a utility function.

1 Investigating the model

In order to use the model set up in later parts of this laboration (i.e. the portfolio
optimization), we need to test our stochastic data to make sure that it a) is independent
and b) has a Normal distribution.

To do this, I have chosen to employ the Kolmogorov-Smirnov goodness-of-fit test
to assert that the data has a Normal distribution, and the autocorrelation function to
check for (linear) independence. However, we first need to load our data into MATLAB;
the data is loaded from stockdata.tsv and logreturns are computed like this, taking
advantage of MATLABs linear algebra capabilities:

load stockdata.tsv

logs = log(stockdata(:,2:8));

logreturns = logs(2:end,:) - logs(1:end-1,:);

This gives us a large matrix logreturns, containing the log returns of all seven
stocks column-wise. Now, to check for independence using the acf, we estimate it with
the given formula:
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(t + 1)

∑

t−h

i=0 (X(i) − X̄)(X(i + h) − X̄)

(t − h + 1)
∑

t

i=0(X(i) − X̄)2

X̄ =
1

t + 1

t
∑

i=0

X(i)

This estimation looks computationally intensive (since it contains three summa-
tions), but using MATLABs linear algebra capabilities one can reduce it to a fairly sim-
ple form. Setting up a function acfhat that preforms this task on the entire logreturns
matrix at once (yielding a row vector with the value of r̂(h) for each stock and a given
value h) makes it possible to use this simple line of code to test independence, according
to a 95% confidence interval giving the comparison |r̂X(h)| ≤ 1.96/

√
n, where n is the

number of stocks (i.e. 7), and h = 1:

lindep = (acfhat(logreturns, 1) > 1.96/sqrt(size(logreturns,2)));
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The function acfhat takes the log return matrix (of arbitrary size) as its first ar-
gument, and the value of h as its second. The function itself is fairly straight-forward,
and looks like this:

function r = acfhat(X, h)

t = size(X, 1);

Xbar = sum(X)/(1+t);

ps1 = X(1:(t-h),:) - repmat(Xbar,t-h,1);

ps2 = X((h+1):t,:) - repmat(Xbar,t-h,1);

ps3 = (X - repmat(Xbar,t,1)).^2;

r = (t+1)*sum(ps1.*ps2)./((t-h+1)*sum(ps3));

Note that the MATLAB economy toolbox contains its own autocorr function doing
the same thing, but this toolbox is unavailable at Chalmers. Since the acf estimate is
easily implemented, this doesn’t pose much of a problem, though.

Running this on our data yields a positive result (i.e. the appropriate element
in lindep is false) for all seven stocks; hence we can assume that the log returns are
independent as expected. Doing the same for squared log returns yields the same result,
further cementing our theory that the log returns are independent.

We continue by doing a Kolmogorov-Smirnov goodness-of-fit test to assert that our
data is distributed the way we think it is (i.e. has a Normal distribution). This is done
using the kstest function from MATLABs statistics toolbox, like so:

for i=1:7

isnormal(1,i) = kstest(logreturns(:,i));

end

The kstest function, when used like this, assumes that it should test against the
standard normal distribution, i.e. N(0, 1). Since the above test rejects the null hypoth-
esis for all stocks, it is likely that we have to estimate the parameters first. Performing
an ML estimate (using the MATLAB mle function) on the stocks and using the mean
of these parameters suggests that the data has a distribution N(0, 0.0225). To take this
into consideration, the test is modified as follows:

for i=1:7

isnormal(1,i) = kstest(logreturns(:,i), ...

ProbDistUnivParam(‘normal’, [0 0.0225]));

end

However, even with these modifications, the Kolmogorov-Smirnov test rejects the
null hypothesis for all stocks. Hence, one must reject the hypothesis that the stock data
is Normally distributed. Continuing the investigation using the kstest2 function to
compare the distributions of pairs of stocks gives further information. This tells us that
stocks 1, 2, 4 and 6 are of a “similar” distribution, with a 95% confidence interval.

Note however that the fourth (Gambio) stock is not rejected when performing a χ2

goodness-of-fit test with a 95% confidence interval; along with the kstest2 results, this
indicates that at least stocks 1, 2, 4 and 6 might be Normally distributed after all. All
in all, the tests are inconclusive.
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2 Portfolio optimization

In order to understand how our utility function U(x) = 1 − e−kx behaves for different
values of k, we plot it for a few values of k as can be seen in Figure 1. Notice how the
graph of U(x) “moves” toward the y axis as k grows; this means we can interpret the
variable k as a measure of risk aversiveness — a larger k means we are less likely to take
risks when speculating. This is due to the fact that U(x) becomes “more” concave at k
increases.
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Figure 1: The utility function for k = 1
2 , 1 and 2.

With this basic understanding of U(x) handled, we can continue dealing with the
task at hand: optimizing the portfolio. To begin with, we import the stock data; after
this we estimate the covariance matrix Q and the expected value vector µ.

In[1]:= data = Import["stockdata.tsv"];

In[2]:= data = data[[All, {2, 3, 4, 5, 6, 7, 8}]];

In[3]:= Q = Covariance[data];

In[4]:= mu = Mean[data];

Additionally, we set up a function EU according to the given formula for E{U(w)},
as well as the utility function U(x) itself, as U:

In[5]:= U[x_] = 1-Exp[-k x]

In[6]:= EU[z_, sigma_] = Integrate[U[x] 1/(Sqrt[2 Pi sigma^2])

Exp[-(x-z)^2/(2 sigma^2)], {x, -Infinity, Infinity}]

Using these functions, we can calculate E{U(w)} for some different values of µ and
Q, before we use the actual data.

Assuming that w contains seven elements, all equal to 1/7, that µ is a zero vector,

and that Q is defined so that wT Qw = 1, we have that E{U(w)} = 1 − e
k
2

2 . Further

testing shows that the results tend to have the form E{U(w)} = 1 − e
ak+bk

2

2 .
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Moving on to test this with the actual data, we obtain the following result (again,
assuming that w only contains elements equal to 1/7):

E{U(w)} ≈ 1 − e
134k+137k

2

2 )

Clearly we cannot assume that w will look like this; in fact, we have to optimize the
portfolio with respect to w. The only constraint we have is that the 1-norm of w has to
be 1, and that it only contains positive elements.

Now, assuming ℜ
(

σ2
)

> 0 (which most likely will be the case, since both w and Q
are real-valued), Mathematica gives us a more sensible form for E{U(w)}:

E{U(w)} = (1 − e
1

2
(k2σ2

−2kz)), σ2 = wT Qw, z = µT w

A couple of simple arithmetic operations can rearrange the exponent:

1

2
(k2σ2 − 2zk) = −k

(

z − k

2
σ2

)

Since we want to maximize the expected utility, we want the exponent to be as large
as possible, since this will bring the value toward 1. Hence, the problem is equivalent
to maximizing

z − k

2
σ2 = µTw − k

2
wT Qw,

which of course is a much easier problem, computationally speaking.
Doing this in Mathematica is not very difficult; the NMaximize function performs a

numeric optimization. We use it like this:

In[7]:= QuadProb[x_] = mu.x - (k/2 x.Q.x);

In[8]:= k = 1/2;

In[9]:= NMaximize[{QuadProb[{a,b,c,d,e,f,g}],

Norm[{a,b,c,d,e,f,g}, 1]==1,

a>=0, b>=0, c>=0, d>=0, e>=0, f>=0, g>=0},

{a,b,c,d,e,f,g}]

Out[9]= {88.2773, {a -> 0.330831, b -> 0., c -> 0., d -> 0.119876,

e -> 0.330015, f -> 0.219277, g -> 1.30998 10^-7}}

To see what different values of k do to this optimization, refer to Table 1. From
the results one can see that some of the “safer” stocks to invest in seem to be Ericsson
and Nokia, while some of the more risky stocks are AstraZeneca, Swedish Match and
Svenska Handelsbaken. These results may seem counter-intuitive, especially considering
the history of Ericsson stock, but as seen in Figure 2, Ericsson and Nokia are actually
quite stable.

Of course, one would expect Swedish Match to be a safe investment as well, along
with Gambio (whose sudden decline near the end probably relates to some kind of
financial transaction); but the analysis is not perfect. Part of the reason this doesn’t
work is probably because we assume the stock data is Normally distributed, even though
initial analysis suggested otherwise.

Also seen in Table 1 is the value of the utility function based on the naive investment
method of investing equally in all stocks. When using a highly risk-aversive utility

4



Table 1: Optimal values of w for some different values of k.
Value of k Optimal value of w (two decimal places) E{U(w)} E{U(wnaive)}

10 (0.00, 0.00, 0.84, 0.00, 0.16, 0.00, 0.00) ≈ −10992 ≈ −3 · 105390

2 (0.02, 0.00, 0.74, 0.00, 0.24, 0.00, 0.00) ≈ −1011 ≈ −10−122

1 (0.12, 0.00, 0.38, 0.00, 0.28, 0.22, 0.00) 1 -16.35
0.5 (0.33, 0.00, 0.00, 0.12, 0.33, 0.22, 0.00) 1 1
0.25 (0.72, 0.00, 0.00, 0.00, 0.11, 0.00, 0.17) 1 1
0.1 (1.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) 1 1

function there is a large difference, implying that the naive way of investing is much too
risky for very risk-averse investors.

However, as k decreases and the utility function becomes more risk-neutral, the dif-
ference disappears almost completely. This indicates that the nave investment method
is fairly risk-neutral, and that one can expect it to be almost as good as investing more
thoughtfully.
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Figure 2: The seven stocks plotted for comparison and graphical analysis.

Of course, since the data was shown not to be Normally distributed, this optimization
is not really valid. One could do many things to “fix” this; dropping seemingly incorrect
data (such as the drop in Gambio stock) or finding a better distribution (although this
would invalidate the simplification done toward the end of the optimization) would be
two relevant solutions in this case.

The utility function can of course not be guaranteed to be perfect, but in this case it
simplifies the problem and works the way we want it to, so there’s not really any reason
to reject it. One should be careful with the value of k, however — large values make the
optimum solution invest a lot in fairly “constant” (i.e. slowly increasing) stock. While
this is good from one point of view, it does take very long before any significant profit
is made from the investment.
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