Laboration: Robustness and Distribution Assumptions

Simon Sigurdhsson

September 1, 2010

Abstract

Analyzing distribution assumptions qualitatively and quantitatively to decide
what distribution real-world data may or may not have; especially concerning (as-
sumed) normally distributed data.

1 Introduction

In statistics, when assuming data is of a certain distribution, one must be able to test and
confirm that hypothesis in order to form more elaborate theories concerning the data.
To do this, several tools are available; qualitative analysis such as plot comparison of
estimated variables, quantitative analysis such as the x? goodness-of-fit-test, and more.
Doing this computationally is preferred, since calculations are many and fairly intensive;
MATLARB is the tool of choice in this laboration.

2 Test of Distribution Assumptions

Loading the ibm.txt file into MATLAB yields a (rather large) structure. We are inter-
ested in the seventh column exclusively, an therefore quite simply extract it. If needed,
the ibm structure can be freed, as we no longer need it. We also reverse the data order,
so that the values obtained are sorted by ascending time. Additionally, we get rid of
problematic zero values (which would break the logreturns, since we can’t divide by
zero). This is done using the MATLAB find function:

values ibm(end:-1:1, 7);

values(find(values));

values

It is now time to calculate the actual logreturns. Instead of accessing and dividing
the elements of our array by some cumbersome loop, we simply perform some very
simple vector subtraction (thanks to the fact that log(S:/Si—1) = log(S:) — log(Si—1));
we “shift” the vector so that the desired values can be obtained by simple subtraction.
Firs, however, we compute the logarithm. This is how it looks:

logs = log(values);
logreturn = logs(2:end) - logs(l:end-1);
logret = logreturn(1:1000);

Plotting the cumulative sum of the logreturns (all of them) yields the plot seen in
figure 1.



14000

12000 h

10000

8000

6000 [

4000

2000

0 L L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 1: A plot of the cumulative sum of all logreturns.

2.1 Qualitative analysis

Performing ML estimates is very easy in MATLAB. Using the mle function with suitable
input gives a good estimation of the parameters of the distribution tested against. To
estimate p and o2 in the case of a normal distribution, we simply specify that we're
assuming a normal distribution:

params = mle(logreturn, ’distribution’, ’normal’);
plot([-0.5:0.01:0.5], normpdf([-0.5:0.01:0.5], params(1), params(2)), ‘r’);

The variable params now contains two elements; the first is / and the second &2.
In later parts of this laboration, we will use these variables to estimate the actual
parameters. The second line in the code fragment above simply plots the estimated
normal density using the ML-estimated parameters. The result (along with the kernel
density estimate described below) can be seen in figure 2.

Performing a kernel density estimation is also easy; using the ksdensity function,
that by default plots the estimated density, we get the blue function in figure 2. The
code used looks like this (most of it is adjusting the plot).

hold on; ksdensity(logreturn); axis([-0.6 0.6 O 50]);

Another way of performing a qualitative analysis is plotting the test data in a qq-
plot and comparing this to a reference qqg-plot. This takes some effort in MATLAB. To
begin with, you can plot a 45deg line (as a kind of weak graphic reference) and set up
suitable variables; a sequence % to go along with the (sorted) data samples X;, F’ _1(%),
and reference data Y; and F _1(%). This is how:

plot([-0.2 0.2], [-0.2 0.2], ‘k’); hold on;



50

451 g

351 h

301 h

25F b

15F h

10 h

-05 -04 -03 -0.2 -01 0 01 02 03 04 05

Figure 2: A plot of the estimated density using ML estimates (red) and kernel density
estimates (blue).

datasample = sort(logreturn);

sequence = (1:length(datasample))/length(datasample);
qqx = datasample;

qqy = norminv(sequence, params(l), params(2));

refx = sort(normrnd(params(1), params(2), [1 100]));
refy = norminv((1:100)/100, params(l), params(2));

In this code fragment, qqx represents X;, qqy represents the accompanying F‘l(%),
refx represents Y; and refy is the equivalent of qqy, only shorter since Y; contains less
samples than X;. Plotting these with the code below yields what we can see in figure 3
— which implies that normal distribution is fairly accurate. However, the data plot
looks more like a cumulative distribution function, which suggests that the data might
not be normally distributed after all (since it deviates from the reference plot). The
actual plot code looks like this:

plot(qgx, qqy, ‘go’);
plot(refx, refy, ‘rx’);
axis([-0.2 0.2 -0.2 0.2]);

2.2 Quantitative analysis

A quantitative analysis can easily be performed in MATLAB; a x? goodness-of-fit anal-
ysis can be made using the chi2gof function. Passing a copy of the normcdf function
with the parameters we acquired from the ML estimates earlier makes the chi2gof func-
tion respect these parameters instead of estimating new ones. This is how the function
is used in this case:



0.2

0.15f

0.1r

0.05f

-0.05f

-0.1p

-0.15

-0.2 : : : : : : :
02 -015 -01 -005 O 005 01 015 02

Figure 3: A qg-plot of the data using a normal distribution assumption (green) and a
reference plot (red).

reject = chi2gof (logreturn, ‘cdf’, {@normcdf, params(1l), params(2)})

For the data given in this laboration, chi2gof returns 0, meaning the null hypothesis
cannot be rejected with a 5% confidence interval. A return value of 1 means the null
hypothesis probably should be rejected.

3 Effect of Distribution Assumption

Generating 100 normal distributed values using MATLAB is easy; the normrnd function
does exactly this. Calculating a confidence interval for these values is also easy — the
normfit function can (if required) return a confidence interval after fitting the data to
an estimated normal distribution with parameters i and 62. This is what it actually
looks like, in MATLARB:

rvs = normrnd(0, 1, [1 100]);
[muhat, sigmahat, muci, sigmaci] = normfit(rvs);

Checking that these are inside the interval is trivial; simply incrementing a counter
if they are is also trivial. Additionally, the o confidence interval edges are stored in an
array, on which we later use the mean and diff functions to calculate an average confi-
dence interval width. What we’re actually doing is averaging the edges, then calculating
the difference:

average_interval_length = diff (mean(sigmacis’));



Running this several timed showed that between 93% and 96% of the time, the real
o was indeed inside the confidence interval. The average interval length hovered around
0.283. This is to be expected at a 95% confidence interval, as o is “correct” roughly
that often, and the interval length corresponds to roughly 5% deviance on either side
of the estimated &.

Doing the same thing with a Student-t distribution is not difficult; replacing normrnd
with trnd (and correct parameters, of course) generates random data according to the
Student-t distribution. In all other aspects, the code remains essentially the same. The
results obtained (with a parameter v = 4) are as follows: 6% of the time, the original
o was inside the confidence interval. Less than 1% of the time, & = v = 3 was inside
the confidence interval. This clearly indicates that the data isn’t normal distributed;
if we were dealing with real data, we’d have to reject the null hypothesis of normal
distribution. The interval width is larger as well, hovering around 0.4, which further
indicates that something is wrong (as it is too large with respect to the 95% confidence
interval).

Setting v = 3 further reduces the number of os inside the confidence interval, down to
1%. The interval length at this value is close to 0.5. Increasing v to 10 has an interesting
effect; the confidence interval width is reduced to roughly 0.3, and the number of os
inside the confidence interval increases to 63%! Further increasing the parameter has
similar results; at ¥ = 100 the results are very similar to the results obtained with actual
normal distributed data. This is quite simply because of the following relation:

lim X =Y, X~t), Y~N(@1)

V—00

4 Robust Estimation

To perform a robust estimation of the contaminated distribution as given, we first
observe that in the equation X = WY +(1—W)Z, we have three different distributions:
Y ~ N(0,0y)Z ~ Cauchy(0) = Student(1)W ~ Bernoulli(1 —€) = Binomial(1,1 —¢)

Hence, we need to generate random samples from these distributions and combine
these to get X. The following code does just that:

binornd(1, 0.95, [1 1001);
trnd (1, [1 100]1);

= normrnd(0, 1, [1 100]);
W.*xY + (1-W) .*Z;

<N =
o

Calculating the expected value of this distribution, given the generated data, is
now simply a matter of using mean on our data vector X. Storing each value of the
1000-iteration loop in a vector, we can then sort this vector and finally obtain the
25th and 975th values, which are —0.56 and 0.58 respectively. Additionally, we can
generate a histogram, seen in figure 4, which displays the problematic nature of this
contaminated distribution — some values deviate heavily from the normally distributed
uncontaminated data.

To fix this, one can use robust estimators when estimating the expected value. Doing
this takes a little more effort — instead of simply using the built-in mean function, we



1000

900 -

800 [

700 -

600 -

500 -

400 -

300

200

1001

0 L .
-20 -15 -10 -5 0 5 10 15

Figure 4: A histogram plot of the expected values of the contaminated data

have to construct a more complicated expression. Taking k = an and giving this value
to the variable k, i.e. k=0.1%100, we can use this expression:

robust = (median(X) + X((k+1):(100-k))/(100-2%k))/2;

Using this value in later calculations yield the histogram seen in figure 5, and 25/975
values of —0.36 and —0.16 respectively. Compared to the straight expected value,
these values are much closer together, and the histogram is far more concentrated.
This implies that the robust estimator is much better at dealing with contaminated
distributions, at least when calculating the expected value. Other robust methods are
(by definition, really) likely to be better than their non-robust equivalent as well.

This has the side-effect of discarding data, but when some data deviates very much,
it is likely to be irrelevant (or contaminated) and should thus be discarded.

x 10

Figure 5: Histogram plot after correction by robust estimators



