
TME225 Mechanics of fluids, 7th November 2012

Assignment 2: Turbulent flow
Emil Ljungskog & Simon Sigurdhsson
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Figure 1: The streamwise velocity v1 (left) and the wall-normal velocity v2 (right) for the four
different points.

Table 1: Difference between true mean and mean for fewer samples at node 1.

Samples Difference (m/s) Difference (%)

100 0.462 22.8
500 0.203 10.0

1000 0.054 2.7
2500 0.018 0.9

1 Time history
The time history for the velocity in four different points in a fully developed turbu-
lent channel flow can be seen in figure 1. As expected, the velocities are oscillating
considerably, which is one of the characteristic features of turbulence. Furhermore,
the mean of the streamwise velocity increases when x2 increases, which of course

follows from the fact that ∂v1
∂x2

> 0 in the lower half of the channel.

If we consider the wall-normal velocity v2, we find that its mean seems to be zero for
all four points, which should be the case since the theory states that v2 = 0. However,
the fluctuating part v′2 oscillates heavier when x2 increases. This is also expected,
since larger fluctuations are possible further out from the wall.

2 Time averaging
The time average of the streamwise velocity in the four nodes can be seen in figure 2
on the next page.
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Table 2: Maximum and minimum of v1 at the four nodes.

x+
2 vmin1 (m/s) vmean1 (m/s) vmax1 (m/s)

1.95 0.55 2.03 8.09
8.80 2.65 7.96 20.88
53.5 7.23 15.14 22.70
235 14.28 18.61 22.80
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Figure 2: The streamwise fluctuating velocity v′1 (left) and mean velocity v2 (right) for the four
different points.

Table 1 on the preceding page shows the mean calculated from different number
of samples. We can see that a large number of samples is required to achieve ac-
curacy. The error doesn’t drop below 1 % until half the samples are used in the
calculation.

The maximum and minimum value of the streamwise velocity at the four nodes is
shown in table 2. As expected, the streamwise velocity increases as we move away
from the wall. This is true for both the mean value and the extreme values.

3 Mean flow
Figure 3 on the following page shows the mean velocity in the x1 direction for the
lower half of the flow. It is fairly clear from the graph that the velocity profile follows
the linear law until x+

2 ≈ 5, which roughly corresponds to what is refered to as the
viscous region in Davidson (2012, p. 53). The log law is followed fairly well from
x+

2 ≈ 50 and very well from x+
2 ≈ 250 and onwards. This also corresponds to the

log-law region discussed in Davidson (2012, p. 53).

3



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

x2

v 1

v1
Linear law

Log law

(a) Linear comparison plot

0 100 200 300 400 500
0

1

2

3

x+
2

lo
g

( v
1
)

v1
Linear law

Log law

(b) Log-linear comparison plot

Figure 3: The mean velocity v1 compared to the linear law and the log law.

The bulk velocity can be computed as

V1,b =
1

2h

2h∫
0

v1 dx2 = 17.55m/s,

and the centerline velocity is trivially fetched from the data and is equal to V1,c =
20.17m/s. From these we can calculate the corresponding Reynolds numbers. Basing
the Reynolds number on half the channel width like the Reynolds number given in
the assignment, we can calculate these new Reynolds numbers as Rei = V1,ih/ν, which
yields the values Reb = 8.77× 103 and Rec = 10.01× 104.

4 The time-averaged momentum equation
As seen in figure 4 on the next page, the terms of the streamwise momentum equa-
tion,

0 = −1
ρ

∂p

∂x1
+ ν

∂2v1

∂x2
2

−
∂v′1v

′
2

∂x2
,

roughly cancel everywhere except at the walls, where the Reynolds stress term is very
large, which is confirmed by figure 6 on page 6 as well. The viscous term (the second
term) remains negative except at the very edges of the flow, and from Davidson (2012,
p. 52) one should expect it to be cancelled (as in, their sum will be −1) by the Reynolds
stress term. This is in fact roughly the case if we stay away from the walls. The viscous
term is largest at the walls. The Reynolds stress term is positive near the walls and
negative in the center of the flow.
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Figure 4: The three terms of the streamwise momentum equation.

5 Wall shear stress
The wall shear stress at the lower wall is given by

τ0 =
∂v1

∂x2

∣∣∣∣∣
x2=0

,

where x2 of course is the distance from the lower wall.

Figure 5 on the next page shows both τ0 and τL plotted over time. Clearly, these are
not equal, which of course is a result of turbulence.

6 Resolved stresses
Figure 6 on the following page clearly shows that among the stresses, only v′2v

′
3 and

v′3v
′
1 are near zero. It is also apparent that the normal stresses, particularly v′1v

′
1, are

much larger than the shear stresses by a factor of almost 10.

7 Fluctuating wall shear stress
The root-mean-square of the wall shear stress is easily calculated using standard MAT-

LAB functions, obtaining the values τrms,0 = 374mPa and τrms,L = 400mPa. Looking
at figure 5 on the next page, this is reasonable, since the root-mean-square as it is
defined in the assignment is actually the standard deviation of the variable.
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Figure 5: The wall shear stress at the lower and upper wall over time.
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Figure 6: The normal and shear stresses v′iv
′
j .
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8 Production terms
The production terms related to the normal and shear stresses discussed earlier,
calculated as Pij = −v′iv

′
k
∂vj/∂xk − v′jv

′
k
∂vi/∂xk, can be seen in figure 7 on the following

page. For the normal stresses, the production terms are fairly close to zero with the
exception of P11 which is very large. The production terms for the shear stresses are
small in comparison, even P12 whose corresponding stress is non-zero.

Only one of the production terms, P12, changes sign at the centerline. The correspond-
ing shear stress, v′1v

′
2 does the same thing as figure 6 on the previous page clearly

shows.

9 Pressure-strain terms
Since the equations solved in order to obtain our data doesn’t include the term ∂p

∂t
, the

pressure may vary in a non-physical way. This means that we probably will get better
results if we compute the velocity-pressure gradient term instead of the pressure-
strain term, since the difference between these two are negligible except very close to
the wall. In figure 8 on the following page, the velocity-pressure gradient term can be
seen for the three normal stresses, as well as for the cross-channel shear stress.

We see that the velocity-pressure gradient terms for the normal stresses are somewhat
symmetric around the center of the channel, while the term for the shear stress is
anti-symmetric. This is due to the “Robin Hood property” of the pressure strain term.
Comparing figure 8 on the next page to figure 7 on the following page, we can see
that Pij and Πij have opposite signs.

The largest sink is clearly Π11 while the largest source is Π33.

10 Dissipation
In figure 9 on page 9, the turbulent dissipation ε can be seen together with the
mean flow dissipation εmean and the production term P k . We see that the mean flow
dissipation is is very large at the wall and dominates for x2

2 . 20, but decreases rapidly.
For x2

2 & 50, almost all dissipation is due to the turbulent fluctuations.

By integrating ε and εmean, we find that the major part of the kinetic energy is
transformed directly from K to ∆T .
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Figure 7: The production terms Pij .
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Figure 8: The velocity-pressure gradient term for the three normal stresses and the cross-channel
shear stress.

8



0 50 100 150 200 250 300 350 400 450
0

200

400

x+
2

m
2
/s

3
Production and dissipation

ε
εmean

P k

Figure 9: The turbulent and mean flow dissipation together with the production term.

11 The fun part – Autocorrelation
Since the autocorrelation actually is a convolution of v′1(t) with itself, we can use that

(̂f ? g)(t) = f̂ (τ)ĝ(τ) to compute it. To do this, we compute the Fourier transform of v′1,
multiply it with its conjugate and perform the inverse transform. For details, please
see the attached MATLAB-code.

The autocorrelation B11 for the four nodes from section 1 can be seen in figure 10 on
the following page, where a maximum lag of 100 time steps has been used in the plot.
We can see that the autocorrelation behaves as expected for all four nodes, that is, it
starts at a value of 1 at no lag and falls towards zero.

From the autocorrelation, we can compute the integral time scale Tint for the flow
as

Tint =

∞∫
0

Bnorm
11 (t̂)dt̂.

If we use a maximum time lag t̂ of 100 time steps, we get the integral time scales in
table 3.

Table 3: Integral time scale Tint for the four nodes.

x+
2 Tint (s)

1.95 0.034
8.80 0.029
53.5 0.032
235 0.029
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Figure 10: The turbulent and mean flow dissipation together with the production term.
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