
TME225 Mechanics of fluids, 1st October 2012

Assignment 1: Laminar flow
Simon Sigurdhsson

1 Fully developed region
Testing for a small derivative tells us that the fully developed region begins at x1 =
0.4573m, while testing for 99% of the top speed instead indicates a fully developed
region already at x1 = 0.2596m. The formula given in the lecture notes, 0.016V 2h

ν ,
with ν = 1.478× 10−5 m2/s, gave the obviously incorrect value x1 = 22.7712m.

In the fully developed region, we would (according to 3.2.2 in the lecture notes)
expect v2 = 0. In fact, at x2 = h/4 inside the fully developed region (specifically at
x1 = 0.56027m), we have v2 = 2.6867× 10−6 m/s which is quite near 0.

2 Wall shear stress
Combining equations 1.5 and 2.3 directly yield τij = 2µSij −2/3µSkkδij , where Skk = 0
due to incompressibility. This means that for the given nj , we have ti = τijnj =

−µ
(
∂vi
∂x2

+ ∂v2
∂xi

)
and hence (since ∂v2

∂x1
= 0) the wall shear stress at the upper wall is

τω,U = −µ ∂v1
∂x2

∣∣∣∣∣
U

.
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Figure 1: Wall shear stress at lower (blue) and upper (red) wall.
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Figure 2: Velocity of the fluid and its derivative near the wall (blue) and in the center (red)

Figure 1 shows the shear stress at both walls, and it is obvious that the shear stress is
high in the inlet, sharply decreasing to a very low level that is maintained in the fully
developed flow. This is because the flow near (but not at) the walls has a high velocity
at the inlet, before stabilizing once reaching the fully developed area.

3 Inlet region
Integrating the velocity w.r.t x2 to get a function ξ(x1) should yield a constant function,
since the flow is governed by the continuity equations. Calculating ξ using the given
data reveals that it is, for all intents and purposes, constant.

4 Wall-normal velocity in the developing region
The velocity v2 doesn’t behave at all like v1; in the center, starting at 0, it quickly rises
to a quite small value of 0.025 m/s before rather quickly falling towards 0 again. It
behaves similarly at the lower wall, with a lower magnitude, and at the upper wall
with an opposite sign.

This could be explained as the fluid moving towards the middle of the stream to fill
the gap created by the lower pressure from the faster-moving fluid at the center. Once
this pressure difference is resolved, the flow is steady.

5 Vorticity

Since we have ω3 = ∂v1
∂x2
− ∂v2
∂x1

, with the latter term being 0 in the fully developed

flow, there is no particular reason to think that the flow should be irrotational. In
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Figure 3: Vorticity component ω3 in the fully developed region (blue), the inlet (red) and the
developing region (teal)
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Figure 4: The strain-rate tensor Sij (blue) and the vorticity tensor Ωij (red) along x2 in the
developing area

fact, as shown by figure 3, the flow is irrotational only in the center (where it also
has the highest velocity). We can see that the whole width of the flow is very nearly
irrotational in the inlet, but with time as the flow moves towards the fully developed
region, the vorticity increases.

6 Deformation
The only two off-diagonal terms of the strain-rate tensor are S12 and S21. Figure 4
shows one of these, along with the corresponding term of the vorticity tensor Ω. It
is immediately obvious that the vorticity tensor is very similar to the vorticity in
figure 3, which is not surprising as the mathematical formula for these is exactly
equivalent. What is interesting is that there seems to be a relation S21 = −Ω21.

The physical meaning of the off-diagonal elements strain-rate tensor is an act of shear
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Figure 5: The dissipation Φ at the lower wall, near the inlet (the dissipation is similar at the upper
wall)
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Figure 6: Eigenvalues w.r.t. x1 and x2 at the center of the flow in the developed area.

on the fluid; in this case, the center moving more quickly than the top and bottom.
The physical meaning of the vorticity tensor, however, is one of rotation — in our
case, the top half rotates counter-clockwise and the bottom half clockwise. This is
confirmed by figure 4.

7 Dissipation
The physical meaning of dissipation is that of energy transfer: from mechanical work
(friction) to heat. One can expect the dissipation to be large where shear stresses are
high. As figure 5 shows, the dissipation is in fact large close to the walls near the inlet,
where figure 1 also showed that shear stress was large. In the fully developed region,
dissipation is effectively zero.
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Figure 7: Stress tensor components w.r.t. x2 in the developed area.
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Figure 8: The eigenvector corresponding to λ1 given at a number of different points in the flow

8 Eigenvalues
The eigenvalues of τij , as illustrated by figure 6, vary with respect to x1 and x2.
Figure 7 additionally illustrates the four components of τij in the developed area,
which can be compared to the eigenvalues with respect to x2 shown in figure 6. Most
of them are small and can be neclected, but the one that is large has an interesting
relationship with the eigenvalues.

9 Eigenvectors
A quiver plot of the eigenvectors corresponding to the largest eigenvector of τij can
be seen in figure 8. It basically shows the direction in which the strain âĂĲpullsâĂİ
the hardest: towards the middle of the stream.
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