TME35 Mechanics of Solids, 14th September 2012

Assignments A1-A13

Simon Sigurdhsson

Assignment 1

Rewriting the expression in (a) using index notation is fairly straight-forward, as it
becomes b,']-cjdi. Expanding the expression in (b) is tedious:
ajjkbix = a1i1b11 + arizbia + ayizbis
+azi1by1 +azi2by) +azi3b)3
+azi1bs1 +aszipbs) +asizbss

Assignment 2

Defining F, = (0,0, — mg) and F,4 according to figure 1, we can assume that around
the origin, we will have a moment equilibrium, i.e. r4 X F4 + 14, X F; = 0. This gives

Figure 1: The rod and forces affecing it. Figure 2: The two cables with forces.



us

ra X Fg + 14, x Fg = [a(4f, = 3f,), 3af,,—4af,] - [-2amg,0,0] =
= al4f, - 3f,—2mg,3f,,—4af,] =0,

which in turn means that f, = 0 and 4f, - 3f, — 2mg = 0. Knowing that according to
figure 2 on the previous page we must have Fy + Fc — F4 = 0, and that both Fz and
Fc must be parallel to the cables they affect, we can assume that Fg = b[3, —4,0] and
Fc =c[-1,—-2,1]. This gives us a system of equations

3b—1c=0
—4b—2c—{7y:0,
1c—%:O

which is partially solved with ¢ = 3b. Combining the remaining part of this system
with the relation 4f, - 3f, — 2mg = 0 we got earlier, and setting f, = zamg, f, = yamg,
we get a new system

-10b-ymg=0

3b—-zmg =0,

4z-3y-2=0
0b

which is completely solvable with y = —%z = —}ﬂ—g, b= %mg and ¢ = %mg.

Given this, we can calculate the forces as
60 80 ]

147" 147’
60 120 60]

Fp = amg[

P = - » ’
c amg[ 147~ 147'147

Assignment 3

Transforming the coordinates is as easy as calculating b; = é;-é;b; = I;;b;, where

cos(—6) cos(%) 0 . V3 1 0
[lz]]— cos(—z?n) cos(% 0 =§ -1 V3 0},
0 0 1 0 0 2

resulting in b = [2—v3/2,1/2+ 24/3, 3]T.



Assignment 4

Proving the given statement can be done by proving AikAl;].l = 0jj:

a
ApAY = By + e | B - —— & By v B
ki ki 1+alel_1um kn oI

1
I B Bknu voB +au; kaknu vOB].
:BikBk]‘ +Bik au;v —«o =
1+awB

bmunvoB +u; voB akaknun
=0jj + asz U; Vg — =
1 + alelm m

1+ akak Uy,

=6;; + aBlujvg — au,v,
! ik O] 1+ ale

= 61]
Assignment 5

Showing (a) is fairly simple. Knowing that (AA)® = T .4k, we manipulate the
expression as follows:

~ \(k A () Al ,
(/\ni)( ) = T,'jn; = (AA;)! )nﬁ) = Tjji; #;
o N(;
- (/\nl)(k) 1’1;-) = Tijékl
o (k) Ak
= (A#;) n;- )= T;j
— T=(An)®a®
Further, showing (b) is not that difficult either, assuming T = T -... . T. Since
the vectors 7)) are orthonormal, all products resulting from T* w1ll be either 0

or (Am)" A0,

exp(T) = i:—f = iT = i o Aia@ = exp(Am)ﬁ(i)ﬁ(i),

Using this relation on the given matrix, which has eigenvalues 2 and (9+v73)2, yields

V73 V73
%63_273(41—3\/_3+(41+3\/_) ) %e%_g?)(3—\/ﬁ+(3+\/ﬁ)e‘/ﬁ) 0
(T)= V73 V73
=P %63_27(3_\/%+(3+\/ﬁ)e\/ﬁ) 63—273(1+e\%)
0 0
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Figure 3: Illustrating the equation @ =0 Figure 4: Illustrating the vector field V®.

Assignment 6

2
The equation @ = x7 + (x_zz) —1 =0 can be visualized as an ellipse centered at the

origin, with foci at [0, +V3] (as in figure 3). The vector field V@ is illustrated by the
quiver plot in figure 4.

Assignment 7

Proving the formula is easy using Gauss’ divergence theorem and applying the chain
rule of differentiation:

éﬁjo'ij(pi ds = Ja](az]wz)dx = jaijai¢i dx + J@la]al] dx
T 0 0 0

- J@la]Gl] dx = éﬁjﬁw(pl ds— Jaijaiqo,- dx
Q r Q

Assignment 8

Using the relation o*i'j = 0jj = 0,,0;; and knowing that in our case o, = 30, we can
easily obtain

0 0 10
[¢']=]0 o0 10|,
10 10 0

with principal values (stresses) 0 and +10V2 with corresponding principal vectors
(directions) [-1,1,0] and [J_rL

+ L
Vot



The invariants can be calculated as I} = I3 = 0 and I, = —200, and the stress vector
with respect to the given plane would be t =70 =[0,0,20 + 2\/5]

Assignment 9

With V = IQ dx, we have

V. . 1d .1 ([d
fimy 7 = limy g | 4= bimy (a“%)d"—
Q Q

1 1
= ‘l/lil’l)o V jvi'i dx = \1/12’1)0 Vvi,iV =V
Q

where the second to last step takes advantage of the upper and lower bounds of
the integral converging towards v; ; as V approaches 0 (and (2 approaches a single
point).

Assignment 10
The principle of angular momentum is given in tensor form as
d
el‘]'kxl't]' dS-I- peijkxifj dV = a peijkx,-vjdV.
r Q Q

We apply the relation ¢; = n,0,; as well as the divergence theorem and Reynold’s
theorem to obtain

d
Jeijk (xiapj ),P dV + Jpeijkxiﬁ dVv = \J‘a (peijkxivj) + (peijkxivj)vl,l dv.
Q Q Q

We continue consolidating these integrals (also using mass conservation to remove
some terms from the right-hand side):

J\ei]‘k (Xio'p]"p + 6ipapj + pxifj) dv = Jeijk (pxi‘l/]' + pxiv'i + pvl,lxivj) dv
Q Q

— Jeijk(xi (0pjp + 0f; _vj)”LGiJ') dv=0
0

This implies that ¢;j;0;; = 0, which in turn implies that o is a symmetric tensor.



Assignment 11

Using K+ U = ddI/;/ + (111;‘1 along with the tensor representations of these,
K= ‘l}i(O']'l',]'+pﬁ)dV
0
. f‘
U= |pedV,
J
Q
dw
T = (e (o) Jav.
Q
dH [
Fraa (p€—4i,i)dV,
Q

we can substitute and consolidate the integrals to arrive at (121):
fvi(o"ji,i+Pﬁ')+0é—(05—ﬁh,i)—((3ﬁvi v;0j;),;)dV =0
Q

— J\pé— (vi']'O'jl' + viO‘ji,j —7/1‘0’]'1"]') +4qii— png =0
Q

et Jpé— vi,jaij +qi;— png =0,

which is what we wanted to show.

Assignment 12

Given ppech = p(p,0), we must have p(p,0) = 10‘,, + (A" + 3;4 *)Dgy. This gives us

0ij = —p(p,0)0ij + Tij
0ij = =p(p,0)0ij + A"6; Dy + 214" D;
1 2
0ij = 39ii%ij = 21 Dij = 3 Dk

Gl’] = 2]/1*D1,].



Assignment 13

Combining Hooke’s law, 0;; = Ao;juy x + p(u; j + uj,;), and the momentum equation
oijj+ pfi = pv;, we get

0ijj +Pfi = pvi
(Aojjupp + plui j+u; ) ;i +pfi = pii;
ASjjup ki + plug jj +uj i)+ pfi = pii;
Auj i+ plug jj+uj i)+ pfi = pii;
ptijj+ (A + puj jipfi = piis,

which is what we wanted to show.



