
TMA521 – Large scale optimization, 5th March 2013

Production scheduling
Simon Sigurdhsson 〈ssimon@student.chalmers.se〉

Abstract This report discusses a solution to the second project of the Large scale

optimization course (TMA521) given by the Appliedmathematics depart-

ment at Chalmers University of Technology. The problem considered is a

production scheduling problemdescribed by a time indexedmodel, which

is solved using Danzig-Wolfe decomposition and column generation. The

problem is thoroughly described by Thörnblad (2011).

1 Problem model and implementation

1.1 The time-indexed model

The time-indexed model is stated by the project description as

min ∑
j∈J

∑
k∈K̃

∑
u∈T

(
Aj

(
u + p̃pm

j

)
+ Bj

[
u + p̃pm

j − d̃j

]
+

)
xjku (1)

s.t. ∑
k∈K̃

∑
u∈T

xjku = 1, j ∈ J , (1a)

∑
u∈T

xjku ≤ λjk, j ∈ J , k ∈ K̃, (1b)

∑
j∈J

u

∑
ν=

[
u− p̃j+1

]
+

xjkν ≤ 1, k ∈ K̃, u ∈ T , (1c)

xjku = 0, j ∈ J , k ∈ K̃, u = 0,1, . . . , max
{

r̃m
j ,ãk

}
− 1, (1d)

xjku ∈ {0,1}, j ∈ J ,k ∈ K̃,u ∈ T , (1e)

where J is the set of jobs to be completed during the planning period, T is a set of

time intervals of the planning period and K̃ is the set of resources that the multitask

cell consists of. Additionally, the constants λjk represent the availability of operation

j on resource k and the constants in the objective function can be interpreted as a

weighted sum of job finishing times (Aj · · ·) and tardiness (Bj · · ·). Finally, r̃m
j is the

release date for job j, ãk is the time when resource k is first available and d̃j is the due

date of job j.

1

mailto:ssimon@student.chalmers.se

1.1.1 Danzig-Wolfe decomposition

Following Lasdon (1970, pp. 148–155), the time-indexed model of the machining

problem can be decomposed using the Dantzig-Wolfe method and solved by column

generation. Identifying (1a) as the coupling constraint and (1b)-(1e) as forming in-

dependent blocks, a master program can be formulated:

min
n

∑
i=0

∑
j∈J

∑
k∈K̃

∑
u∈T

(
Aj

(
u + p̃pm

j

)
+ Bj

[
u + p̃pm

j − d̃j

]
+

)
xi

jkuαi
j (2)

s.t. ∑
u∈T

∑
k∈K̃

n

∑
i=0

xi
jkuαi

k + s = 1, j ∈ J (2a)

n

∑
i=0

αi
k = 1, k ∈ K̃ (2b)

αk
i ≥ 0, k ∈ K̃, i = 0,1, . . . ,n (2c)

Here, a slack variable s has been added to the coupling constraint. The independ-

ent blocks can be treated either as one subproblem or as k different subproblems.

Quick tests seemed to indicate that fewer iterations were needed when using mul-

tiple subproblems, and as such this is what was used. The k subproblems are of the

form

min ∑
j∈J

∑
u∈T

(
cju − πj

)
xjku − π0k (3)

s.t. ∑
u∈T

xjku ≤ λjk, j ∈ J , (3a)

∑
j∈J

u

∑
ν=[u− p̃pm

j]+

xjkν ≤ 1, u ∈ T , (3b)

xjku = 0, j ∈ J u = 0,1, . . . , max
{

r̃m
j ,ãk

}
− 1, (3c)

xjku ∈ {0,1}, k ∈ K̃,u ∈ T , (3d)

where cju =

(
Aj

(
u + p̃pm

j

)
+ Bj

[
u + p̃pm

j − d̃j

]
+

)
.

1.1.2 Column generation

The column generation procedure used to solve the system consists of two (or three)

phases. In the first phase, a basic feasible solution to the problem is found. In the

second phase, columns are added until an optimal solution is found.

The first phase replaces the objective function (2) with the slack variable, and sets

the costs cju to zero. As long as s ≥ 0, the subproblems are solved and new columns

are added to the master program to form a new restricted master program. When

2

s = 0 (or in practice, s < ε for some small ε), the algorithm moves on to the second

phase.

In the second phase, the value of s is fixed and the original objective functions are

restored. Again, the subproblems are solved, columns are added and the restricted

master program is solved again. When mink∈K̃ zk ≥ 0 (i.e., all subproblems have pos-

itive objective values), the algorithm has found an optimal solution Lasdon 1970,

p. 153 and the loop is terminated.

In the third and final ‘phase’, an optimal solution is calculated from the αi
j and xi

jku
given by the algorithm. This is done by solving the optimization problem

min ∑
k∈K̃

∑
j∈J

∑
u∈T

cjuxjku (4)

s.t. ∑
u∈T

∑
k∈K̃

n

∑
i=0

xi
jkuαi

k + s = 1, j ∈ J (4a)

∑
u∈T

xjku ≤ λjk, j ∈ J , (4b)

∑
j∈J

u

∑
ν=[u− p̃pm

j]+

xjkν ≤ 1, u ∈ T , (4c)

xjku = 0, j ∈ J , u = 0,1, . . . , max
{

r̃m
j ,ãk

}
− 1, (4d)

∑
k∈K̃

∑
u∈T

xjku = oj, j ∈ J ,, (4e)

xjku ∈ {0,1}, k ∈ K̃, u ∈ T , (4f)

where αi
j are fixed and oj = ∑n

i=0 ∑u∈T ∑k∈K̃ xi
jkuαi

j. This results in a solution xjku

whichmy be transformed into variables zijk and yijpqk, to be used as input to the feas-

ibility problem.

1.2 Implementation

The entire algorithm was implemented in AMPL, and a full code listing is available

in appendix A on page 8. In short, the proj2-k-msub.mod file contains the model

specification with all parameters, variables, objective functions and constraints of

the model. The proj2-k-msub.run file loads the model and data and proceeds with

solving the model using the algorithm described previously, followed by solving the

feasibility problem (which is taken verbatim from the project description and solved

without any decomposition).

3

2 Results

All results presented in this section were obtained using the data from Thörnblad

(2011) given in 2010-11-17_15j_MTC6.dat unless otherwise noted. Results for the

Dantzig-Wolfe decomposition are divided into 1-subproblemand k-subproblemvari-

ants; although the 1-subproblem isn't described in this report it should be fairly

simple to deduce given Lasdon (1970), and modifying the code of the k-subproblem
variant to instead solve the 1-subproblem variant is fairly trivial.

2.1 Optimal solution

The threemethods (twoDantzig-Wolfe decompositions and the regular problemwith

no decomposition) arrive at slightly different solutions. The 1-subproblem variant

of the decomposed problem arrives at an objective value 3841.6 after 96 iterations

in the second phase. Meanwhile, the k-subproblem variant arrives at the same ob-

jective value after only 19 iterations. In fact, the two variants arrive at the exact

same solution, but the k-subproblem variant spends only 7.8 s in phase two while the

1-subproblem variant spends 27.5 s. Clearly, the k-subproblem variant is preferrable,

which is why subsequent results are based on that model only. The undecomposed

model arrives at the objective value 4040, with a slightly different solution compared

to the Dantzig-Wolfe model. Tables 1 to 2 on the next page show the solutions given

by the Dantzig-Wolfe method and the original model, respectively — the differing

jobs have been marked in both tables.

2.2 Solution dependence on iteration count

In the second phase of the column generation algorithm, one can obtain upper and

lower bounds on the optimal value. Anobvious upper bound is the value of themaster

program in any given iteration, but obtaining a lower bound is less trivial. According

to Lasdon (1970, p. 163), a lower bound is given by zB + ∑k(z0
k − π0k), where zB is the

objective value of the master program in the current iteration, and z0
k − π0k is given

by the solution to subproblem k.

Figure 1 on the following page shows the upper and lower bound with respect to CPU

time spent in phase two, for the k-subproblem model. A similar graph with respect

to iterations is not included, but one can note that each iteration in phase two takes

approximately the same CPU time to calculate (roughly 0.4 s), so the graph will be

very similar. As seen by the graph, a fairly tight bound is found halfway through the

algorithm (at approximately 4 s), and the bound is very tight after 6 s.

4

Table 1: Solution using Dantzig-Wolfe

Job MC1 MC2 MC3 MC4 MC5

1 0 1 0 0 0

2 1 0 0 0 0

3 0 1 0 0 0

4 0 0 0 1 0

5 0 0 1 0 0

6 0 0 0 1 0

7 1 0 0 0 0

8 0 0 1 0 0

9 0 1 0 0 0

10 1 0 0 0 0

11 1 0 0 0 0

12 0 0 0 0 1

13 0 0 1 0 0

14 0 0 1 0 0

15 1 0 0 0 0

Table 2: Solution without decomposition

MC1 MC2 MC3 MC4 MC5

1 0 1 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

4 0 0 0 1 0

5 0 0 1 0 0

6 0 0 1 0 0

7 1 0 0 0 0

8 0 0 1 0 0

9 0 1 0 0 0

10 0 1 0 0 0

11 1 0 0 0 0

12 0 0 0 0 1

13 0 0 0 1 0

14 0 0 1 0 0

15 1 0 0 0 0

0 1 2 3 4 5 6 7 8
0

2,000

4,000

6,000

CPU time (s)

O
b
je
ct
iv
e
v
a
lu
e Upper bound

Lower bound

Figure 1: Upper and lower bound of the Dantzig-Wolfe decomposition with respect to CPU time
in phase two.

5

Table 3: Tardiness hj for the original and mod-
ified objective functions

Job Aj = Bj = 1 Aj = 0 Bj = 0

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

5 1486.6 1486.6 1486.6

6 0.0 0.0 0.0

7 1.6 1.6 2.6

8 1319.6 1319.6 1318.6

9 0.0 0.0 0.0

10 0.0 0.0 0.0

11 0.0 0.0 0.0

12 672.2 672.2 668.2

13 0.0 0.0 0.0

14 161.2 175.2 162.2

15 0.0 0.0 0.0

Total 3641.2 3655.2 3638.2

Table 4: Completion times sj for the original and
modified objective functions

Job Aj = Bj = 1 Aj = 0 Bj = 0

1 25.6 15.6 112.6

2 3.6 25.6 74.6

3 5.6 33.6 41.6

4 10.0 5.0 151.0

5 1.6 1.6 1.6

6 34.0 10.0 136.0

7 1.6 1.6 2.6

8 2.6 2.6 1.6

9 15.6 3.6 67.6

10 33.6 5.6 6.6

11 13.6 13.6 37.6

12 7.2 7.2 3.2

13 27.0 24.0 151.0

14 5.2 19.2 6.2

15 23.6 23.6 19.6

Total 200.4 192.4 813.4

2.3 Changing the objective function

The objective function of the original model seeks to minimize both tardiness and

completion time. This is not necessarily themost relevant objective, and trying other

objective functions may yield better results.

Two objectives that spring to mind easily are the minimization of only tardiness or

completion times, which is easily implemented by setting Aj = 0 or Bj = 0 in the

original objective function, respectively. As seen in tables 5 to 6 on the next page,

we obtain slightly different solutions compared to the original model (table 1 on the

preceding page). We note that when minimizing the tardiness, resource MC5 is un-

used.

Perhaps more relevant statistics for these two objective functions are the tardiness

and completion times of each job. Tables 3 to 4 on the current page show this data

for the original model as well as the tardiness and completion time objectives. We

note that an interesting consequence of minimizing the tardiness (for a rather small

gain of 3 h) has a large 613h penalty on the completion times, while minimizing the

completion times (gaining 8h) only penalizes the tardiness by 14 h.

6

Table 5: Solution with Aj = 0

Job MC1 MC2 MC3 MC4 MC5

1 0 1 0 0 0

2 0 1 0 0 0

3 0 1 0 0 0

4 0 0 1 0 0

5 0 0 1 0 0

6 0 0 0 1 0

7 1 0 0 0 0

8 1 0 0 0 0

9 1 0 0 0 0

10 0 1 0 0 0

11 1 0 0 0 0

12 0 0 1 0 0

13 0 0 0 1 0

14 1 0 0 0 0

15 0 1 0 0 0

Table 6: Solution with Bj = 0

MC1 MC2 MC3 MC4 MC5

1 0 1 0 0 0

2 0 1 0 0 0

3 1 0 0 0 0

4 0 0 1 0 0

5 0 0 1 0 0

6 0 0 0 1 0

7 1 0 0 0 0

8 0 0 1 0 0

9 1 0 0 0 0

10 0 1 0 0 0

11 1 0 0 0 0

12 0 0 0 0 1

13 0 0 0 1 0

14 0 0 1 0 0

15 1 0 0 0 0

3 Conclusions

TheDantzig-Wolfe decomposition is clearly a goodmethod of solving the given prob-

lem. It is fairly efficient, and arrives at a better optimal solution than simply letting

CPLEX decide what to do. Additionally one can see that for this problem, decom-

posing the model into k subproblems is more efficient than using a single subprob-

lem.

Modifying the objective function can be an important tool in optimizing the solution

for different situations. For instance, while this report only investigated the two ex-

tremes of Aj = 0 and Bj = 0 for all j, one can imagine that setting Aj = 0 for some j
and Bj = 0 for others will yield solutions that will prioritize the early completion of

some jobs while penalizing the tardiness of others.

Using the upper and lower bound, which is easily obtained for each iteration, one

could compute a duality gap which could be used to abort the algorithm when ‘good

enough’ solutions are found. In the case investigated in this report (i.e., j = 15), this
is not necessary since the time required to find an optimal solution is fairly low, but

for larger problems (say, the j = 70 dataset) this may be very useful.

7

References

Lasdon, Leon S. (1970). Optimization Theory for Large Systems. Mineola, New York:

Dover Publications.

Thörnblad, Karin (2011). ‘On the Optimization of Schedules of a Multitask Produc-

tionCell’. Licentiate thesis. Göteborg:Department ofMathematical Sciences, Chalmers

University of Technology.

A AMPL implementation

A.1 Main file (proj2-k-msub.run)

The preamble of the code simply loads the model and data, sets a few useful options

and declares a couple of parameters that are irrelevant to the model but used by the

algorithm.

1 # TMA521 - Large scale optimization
2 # Spring 2013
3 # Project 2
4 # Simon Sigurdhsson
5

6 option solver cplexamp;
7 option cplex_options
8 'clocktype=1'
9 'timing=1';
10 model proj2-k-msub.mod;
11 data MTC6_v2_proj_course/2010-11-17_15j_MTC6.dat;
12

13 param upper; param lower; param sumfij default 0;
14 param pIIcpu default 0;
15 param epsilon := 0.000000001;
16 param nIter default 0; param pIIiter default 0;
17 param phase symbolic, default "I";
18 param s_disc {JOBS}; param h_disc {JOBS};

After that, all problems are declared. Only one master program is declared (it will be

modified later when moving from phase one to phase two). Since the subproblems

are harder to change, they are defined for both phases separately.

20 problem Master_Program: A_MP, MP_multi, MP_convex, alpha, slack;
21 option presolve 0;
22

23 problem SubproblemI {k in K_mach_RESOURCES}: A_SUB[k],
24 {j in JOBS} SUB_limit[k,j],
25 {u in T_ALL_INTERVALS} SUB_occupy[k,u],
26 {j in JOBS, u in 0..(max(r_disc[j],a_disc[k])-1)} SUB_delay[k,j,u], x;
27 option presolve 0;

8

28

29 problem SubproblemII {k in K_mach_RESOURCES}: SUB[k],
30 {j in JOBS} SUB_limit[k,j],
31 {u in T_ALL_INTERVALS} SUB_occupy[k,u],
32 {j in JOBS, u in 0..(max(r_disc[j],a_disc[k])-1)} SUB_delay[k,j,u], x;
33 option presolve 0;

A.1.1 First and second phase

The first (finding a basic feasible solution) and second (finding the optimal solu-

tion) phase are handled in the same loop by simply changing the master program

and solving different subproblems after the initial basic feasible solution has been

found.

36 repeat {
37 let nIter := nIter + 1;
38 printf "\nPHASE %s -- ITERATION %d\n\n", phase, nIter;
39

40 for {k in K_mach_RESOURCES} {
41 printf "\nRESOURCE %s\n\n", k;

Here, the subproblems are solved. If the objective of the subproblems (defined as

z0
k − π0k) is non-negative, nothing is done. If the objective is positive, the solution is

added to the list of extreme points and its cost is saved.

43 if phase = "I" then {
44 solve SubproblemI[k];
45 if A_SUB[k] < -epsilon then {
46 let nPROP[k] := nPROP[k] + 1;
47 let {j in JOBS, u in 0..T_HORIZON}
48 propx[j,u,k,nPROP[k]] := x[j,k,u];
49 let c_prop[k,nPROP[k]] :=
50 sum {u in 0..T_HORIZON, j in JOBS} c[j,u]*x[j,k,u];
51 }
52 } else {
53 solve SubproblemII[k];
54 if SUB[k] < -epsilon then {
55 let nPROP[k] := nPROP[k] + 1;
56 let {j in JOBS, u in 0..T_HORIZON}
57 propx[j,u,k,nPROP[k]] := x[j,k,u];
58 let c_prop[k,nPROP[k]] :=
59 sum {u in 0..T_HORIZON, j in JOBS} c[j,u]*x[j,k,u];
60 }
61 };
62 };

Now, we check the termination criteria. If all objectives are non-negative, we either

have an infeasible problem (phase one) or an optimal solution (phase two), and ter-

minate the loop. In phase twowe also save the sumof the objective functions in order

9

to calculate the lower bound later.

64 if phase = "I" then {
65 if min {k in K_mach_RESOURCES} A_SUB[k] >= -epsilon then {
66 printf "\n*** NO FEASIBLE SOLUTION ***\n";
67 break;
68 }
69 } else {
70 if min {k in K_mach_RESOURCES} SUB[k] >= -epsilon then {
71 printf "\n*** OPTIMAL SOLUTION ***\n";
72 break;
73 }
74 let sumfij := sum {k in K_mach_RESOURCES} SUB[k];
75 };

Next, the master program is solved.

77 solve Master_Program;
78 printf "\n";
79 display alpha;
80 #display MP_multi.slack;

If the algorithm is in phase one, the slack variable is checked. If it is zero (or rather,

very small), it enters phase two by modifying the master program.

82 if phase = "I" then {
83 display slack;
84 #display MP_multi.dual;
85

86 if slack <= epsilon then {
87 printf "\nSETTING UP FOR PHASE II\n\n";
88 let phase := "II";
89 let pIIiter := nIter;
90 let pIIcpu := _total_solve_time;
91 printf "BOUNDS iter cpu lower upper\n";
92

93 problem Master_Program;
94 drop A_MP; restore MP; fix slack;
95

96 solve Master_Program;
97 printf "\n";
98 display alpha; display MP_multi.dual; display MP_multi.slack;
99 };
100 };

Finally, π0k and π are set, and (if in phase two) the upper and lower bound is printed

along with iteration count and CPU time consumed.

102 let {j in JOBS} pi[j] := MP_multi[j].dual;
103 let {k in K_mach_RESOURCES} piz[k] := MP_convex[k].dual;
104

105 if phase = "I" then { } else {

10

106 let upper := MP;
107 let lower := MP + sumfij;
108 printf "BOUNDS %d %f %f %f", nIter-pIIiter,
109 _total_solve_time-pIIcpu, lower, upper;
110 };
111 };

A.1.2 Third phase

The third phase simply solves themodified problemdescribed in the report.

114 printf "\nPHASE III\n\n";
115 problem Master_ProgramIII: MPIII, MP_multi, SUB_limit, SUB_occupy,
116 SUB_delay, MPIII_match, x;
117 let {j in JOBS}
118 opt[j] := sum {u in T_ALL_INTERVALS, k in K_mach_RESOURCES, i in 1..nPROP[k]}
119 propx[j,u,k,i] * alpha[k,i];
120 solve MPIII;

It also transforms the solution xjku to obtain the useful variables sj, hj and tj.

124 let {j in JOBS, q in JOBS, k in K_RESOURCES} y_disc_solution[j,q,k] := 0;
125 for {j in JOBS, q in JOBS,k in K_mach_RESOURCES} {
126 if (0 < sum{u in T_ALL_INTERVALS} u*x[j,k,u]
127 < sum{u in T_ALL_INTERVALS} u*x[q,k,u]) then
128 let y_disc_solution[j,q,k] := 1 };
129 let {j in JOBS, k in K_RESOURCES} z_disc_solution[j,k] := 0;
130 let {j in JOBS, k in K_mach_RESOURCES} z_disc_solution[j,k] :=
131 sum{u in T_ALL_INTERVALS} x[j,k,u].val;
132 let {j in JOBS} t_disc_solution[j] :=
133 T_length_interval*(sum{k in K_mach_RESOURCES, u in T_ALL_INTERVALS} u*x[j,k,u].val);
134 printf "\n*** SOLUTION ***\n";
135 display z_disc_solution;
136 #display t_disc_solution;
137 let {j in JOBS} s_disc[j] := sum {u in T_ALL_INTERVALS, k in K_mach_RESOURCES}
138 (u+p_postmach[j])*x[j,k,u];
139 let {j in JOBS} h_disc[j] := sum {u in T_ALL_INTERVALS, k in K_mach_RESOURCES}
140 max(0,u+p_postmach[j]-d_disc[j])*x[j,k,u];

A.1.3 Feasibility problem

The very last thing done is to solve the feasibility problem, which is very straight-

forward.

144 printf "\n*** FEASIBILITY PROBLEM ***\n";
145 problem Feasibility: F, F_scheduled, F_flex, F_order1, F_order2,
146 F_earliest, F_sorder, F_interop, F_release, F_avail, F_completion,
147 F_tardiness, F_fsol1, F_fsol2, t, z, y, s, h;
148 solve Feasibility;
149 display z;

11

150 #display y;
151 display t;
152 #display s;
153 #display h;

A.2 Model (proj2-k-msub.mod)

The model file describes the models, variables, parameters, constraints, sets and ob-

jective functions used in solving the problem.

1 # TMA521 - Large scale optimization
2 # Spring 2013
3 # Project 2
4 # Simon Sigurdhsson

It begins by defining a couple of sets. Most of these are pesent in Thörnblad's (2011)

model as well (in fact, so are most of the parameters, too).

7 param T_HORIZON;
8 set T_ALL_INTERVALS := 0..T_HORIZON;
9 param maxjobs;
10 set JOBS := 1..maxjobs;
11 set K_RESOURCES ordered;
12 set K_mach_RESOURCES ordered;
13 param n {JOBS};
14 set ACTIVE_I {j in JOBS} := setof {i in 1..n[j]}(i);

Next, a couple of parameters are defined (again, from Thörnblad (2011)).

17 param T_length_interval;
18 param lambda_mach {JOBS,K_mach_RESOURCES};
19 param r_disc {JOBS};
20 param a_disc {K_mach_RESOURCES};
21 param proc_time_disc {JOBS};
22 param p_postmach {JOBS};
23 param d_disc {JOBS};

25 param c {j in JOBS, u in T_ALL_INTERVALS} =
26 ((u+p_postmach[j]) + max(0,u+p_postmach[j]-d_disc[j]));
27 param y_disc_solution{JOBS, JOBS, K_RESOURCES};
28 param z_disc_solution{JOBS, K_RESOURCES};
29 param t_disc_solution{JOBS};

31 param nPROP {K_mach_RESOURCES} default 0;
32 param propx {JOBS,T_ALL_INTERVALS,k in K_mach_RESOURCES,1..nPROP[k]} >= 0;
33 param c_prop {k in K_mach_RESOURCES,1..nPROP[k]};
34 param pi {JOBS} default 0;
35 param piz {K_mach_RESOURCES} default 1;

Finally, a couple of parameters that aren't used by this model, but present in the

data.

12

38 set I_OP; param M; param w; set Q_PREC;
39 param q_follow{Q_PREC}; param v_jq{Q_PREC}; param v_disc_jq_ext{Q_PREC};
40 param v_mach_jq{Q_PREC}; param proc_time_mach{JOBS};
41 param proc_time{I_OP,JOBS}; param p_j_o_postmach_disc{JOBS};
42 param a{K_RESOURCES}; param resource_weight{K_RESOURCES}; param r_mach{JOBS};
43 param r{JOBS}; param d{JOBS}; param lambda{I_OP,JOBS,K_RESOURCES};

The variables of the model are declared.

46 var slack >= 0;
47 var alpha {k in K_mach_RESOURCES, 1..nPROP[k]} >= 0;
48 var x {JOBS,K_mach_RESOURCES,T_ALL_INTERVALS} binary;

A.2.1 Master program

The objective functions of the master program. One for phase two (MP) and one for

phase one (A_MP).

53 minimize MP:
54 sum {k in K_mach_RESOURCES, i in 1..nPROP[k]} (c_prop[k,i]*alpha[k,i]);
55 minimize A_MP:
56 slack;

The constraints of the master program.

71 subject to MP_multi {j in JOBS}:
72 sum {u in T_ALL_INTERVALS, k in K_mach_RESOURCES, i in 1..nPROP[k]}
73 propx[j,u,k,i]*alpha[k,i] + slack = 1;
74 subject to MP_convex {k in K_mach_RESOURCES}:
75 sum {i in 1..nPROP[k]} alpha[k,i] = 1;

A.2.2 Subproblems

The objective functions of the master program — k of them for phase two (SUB) and
equally many for phase one (A_SUB).

59 minimize A_SUB {k in K_mach_RESOURCES}:
60 sum {j in JOBS, u in 0..T_HORIZON}
61 (0 - pi[j]*x[j,k,u])
62 - piz[k];
63

64 minimize SUB {k in K_mach_RESOURCES}:
65 sum {j in JOBS, u in 0..T_HORIZON}
66 ((c[j,u] - pi[j])*x[j,k,u])
67 - piz[k];

Constraints of the subproblems.

80 subject to SUB_limit {k in K_mach_RESOURCES, j in JOBS}:
81 sum {u in T_ALL_INTERVALS} x[j,k,u] <= lambda_mach[j,k];
82 subject to SUB_occupy {k in K_mach_RESOURCES, u in T_ALL_INTERVALS}:

13

83 sum {j in JOBS, nu in max(u-proc_time_disc[j]+1,0)..u} x[j,k,nu] <= 1;
84 subject to SUB_delay {k in K_mach_RESOURCES, j in JOBS,
85 u in 0..(max(r_disc[j],a_disc[k])-1)}:
86 x[j,k,u] = 0;

A.2.3 Phase three problem

The phase three problem only introduces one new constraint (and an associated

parameter) that matches the solution to the optimal value of the column generation

method.

89 param opt{JOBS} >= 0;
90 minimize MPIII:
91 sum {j in JOBS, k in K_mach_RESOURCES, u in T_ALL_INTERVALS}
92 c[j,u]*x[j,k,u];
93 subject to MPIII_match {j in JOBS}:
94 sum {k in K_mach_RESOURCES, u in T_ALL_INTERVALS} x[j,k,u] = opt[j];

A.2.4 Feasibility problem

The feasibility problem is taken verbatim from the project description. It's not very

interesting.

97 var t {I_OP,JOBS} >= 0;
98 var z {I_OP,JOBS,K_RESOURCES} binary;
99 var y {I_OP,JOBS,I_OP,JOBS,K_RESOURCES} binary;
100 var s {JOBS} >= 0;
101 var h {JOBS} >= 0;
102 minimize F:
103 sum {j in JOBS} (s[j]-0.001*t[1,j]+h[j] +
104 sum {i in ACTIVE_I[j], k in K_RESOURCES} resource_weight[k]*z[i,j,k]);
105 subject to F_scheduled {j in JOBS,i in ACTIVE_I[j]}:
106 sum {k in K_RESOURCES} z[i,j,k] = 1;
107 subject to F_flex {j in JOBS,i in ACTIVE_I[j], k in K_RESOURCES}:
108 z[i,j,k] <= lambda[i,j,k];
109 subject to F_order1 {j in JOBS, q in JOBS, i in ACTIVE_I[j],
110 p in ACTIVE_I[q], k in K_RESOURCES}:
111 y[i,j,p,q,k] + y[p,q,i,j,k] <= if (i=p and j=q) then 2 else z[i,j,k];
112 subject to F_order2 {j in JOBS, q in JOBS, i in ACTIVE_I[j],
113 p in ACTIVE_I[q], k in K_RESOURCES}:
114 y[i,j,p,q,k] + y[p,q,i,j,k] + 1 >= if (i=p and j=q) then 0
115 else (z[i,j,k] + z[p,q,k]);
116 subject to F_earliest {j in JOBS, q in JOBS, i in ACTIVE_I[j],
117 p in ACTIVE_I[q], k in K_RESOURCES}:
118 t[i,j] + proc_time[i,j] - M*(1-y[i,j,p,q,k]) <=
119 if (i=p and j=q) then M else t[p,q];
120 subject to F_sorder {j in JOBS, i in 1..(n[j]-1)}:
121 t[i,j] + proc_time[i,j] + w <= t[i+1,j];
122 subject to F_interop {j_prec in Q_PREC}:

14

123 s[j_prec] + v_jq[j_prec] <= t[1,q_follow[j_prec]];
124 subject to F_release {j in JOBS}:
125 t[1,j] >= r[j];
126 subject to F_avail {j in JOBS, i in ACTIVE_I[j], k in K_RESOURCES}:
127 t[i,j] >= a[k]*z[i,j,k];
128 subject to F_completion {j in JOBS}:
129 s[j] = t[n[j],j] + proc_time[n[j],j];
130 subject to F_tardiness {j in JOBS}:
131 h[j] >= s[j]-d[j];
132 subject to F_fsol1 {j in JOBS, q in JOBS, k in K_RESOURCES}:
133 y[2,j,2,q,k] = y_disc_solution[j,q,k];
134 subject to F_fsol2 {j in JOBS, k in K_RESOURCES}:
135 z[2,j,k] = z_disc_solution[j,k];

A.3 Changed objectives

The changed objective functions discussed in the report are implemented as copies

of the model file with some lines changed. Below, the lines changed are listed as the

new value of that line.

A.3.1 First case (Aj = 0)

The first case simply entails a change of the constants cju.

25 param c {j in JOBS, u in T_ALL_INTERVALS} =
26 (max(0,u+p_postmach[j]-d_disc[j]));

A.3.2 Second case (Bj = 0)

Like the first case, the second case only changes the constants cju.

25 param c {j in JOBS, u in T_ALL_INTERVALS} =
26 ((u+p_postmach[j]));

15

	Problem model and implementation
	The time-indexed model
	Danzig-Wolfe decomposition
	Column generation

	Implementation

	Results
	Optimal solution
	Solution dependence on iteration count
	Changing the objective function

	Conclusions
	AMPL implementation
	Main file (proj2-k-msub.run)
	First and second phase
	Third phase
	Feasibility problem

	Model (proj2-k-msub.mod)
	Master program
	Subproblems
	Phase three problem
	Feasibility problem

	Changed objectives
	First case (Aj=0)
	Second case (Bj=0)

