
TMA521 – Large scale optimization, 11th February 2013

VLSI routing and Lagrangian duality
Simon Sigurdhsson, 〈ssimon@student.chalmers.se〉

Abstract This report discusses a solution to the first project of the Large scale optim-
ization course (TMA521) given by the Applied mathematics department at
Chalmers University of Technology. The problem considered is a routing
problem in VLSI based on that discussed by Feo and Hochbaum (1986).

1 Introduction
Although the problem is defined and discussed by both Feo and Hochbaum (1986) and
the project description, it will now be briefly presented to provide some context.

The problem consists of deciding wether it is possible to connect a number of compon-
ents in the context of a two-layer board with horizontal wiring on one side and vertical
on the other, and a specified number of connectors between these layers.

The problem is modelled mathematically as an ILP problem which is then Lagrangian
relaxed resulting essentialy in one cheapest route problem for each wanted connec-
tion.

2 Subgradient optimization
The first task of the project consists of implementing the subgradient optimization as
MATLAB code. Routines that solve the lagrangian subproblems (the cheapest route
problems) are given, and as such the code only has to reinterpret the output of those
routines and perform the subgradient optimization.

Appendices A on page 7 shows the complete code listing for this task (sans the parts
given in the problem description, i.e. gsp.c, sph.c, visagrid.m and the problem
instance files), but a full description of the algorithm is given below.

2.1 The subgradient algorithm

Since the given function gsp.c solves the actual lagrangian subproblems, the imple-
mentation of the subgradient algorithm is very simple:

1

ssimon@student.chalmers.se

1. Call gsp to solve the subproblem, discard all paths that have a total cost of 1 or
more, and transform the data into an xijl matrix. This is what the functions okcom
and getxij (described in appendices A.1 to A.2 on page 10) do, respectively.

2. Calculate the dual value for the solution obtained in the current iteration,

h(πt) =
n∑
i=1

πti +
k∑
l=1

xtlsl l − n∑
i=1

n∑
j=1

πtixjil

 .
3. Calculate the subgradient direction,

dti = 1−
k∑
l=1

n∑
j=1

xjil .

4. Calculate the step length,

st = λt
h(π)−LBD∑n

i=1

(
dti

)2 .

5. Update the dual variables by taking a step in the subgradient direction, i.e. set
πt+1
i = max{0,πti − s

tdti }.

6. Finally, decrease lambda by setting λt+1 = 0.95λt.

7. Repeat from step 1 unless the maximum number of iteration has been reached.

2.2 Results

As shown by figure 1 on the following page, the only problem instance that can
be classified as either possible or impossible without using any primal feasibility
heuristic is instance p6 (figure 1a on the next page), which has a dual objective value of
approximately 6, meaning the optimal value of the problem (i.e. the maximum number
of connections possible) is at most 6. Thus, the required number of connections (7)
cannot be obtained.

The other two problems show dual objective values larger than the required number of
connections, but this is no guarantee that the instance can have that many connections;
the dual objective value it an optimistic bound.

3 A feasibility heuristic
Implementing a heuristic that uses the problem formulation to reduce a dual solu-
tion to a feasible one might seem like a daunting task. However, thinking of the

2

100 200 300 400 500 600 700 800 900 1,000
0

5

10

15

Iterations

C
on

ne
ct
io
ns

Dual objective value
Connections required
Primal feasible solution

(a)Instance p6.

100 200 300 400 500 600 700 800 900 1,000
0

10

20

Iterations

C
on

ne
ct
io
ns

Dual objective value
Connections required
Primal feasible solution

(b)Instance p10.

100 200 300 400 500 600 700 800 900 1,000
0

10

20

Iterations

C
on

ne
ct
io
ns

Dual objective value
Connections required
Primal feasible solution

(c)Instance p11.

Figure 1: The dual objective value and primal feasible solution for three problem instances.

3

subproblems as cheapest route problems, they only differ from feasible solutions of
the original problem in that the paths are not required to be vertex-disjoint. Thus,
removing or re-routing paths that cross in a dual solution will result in a feasible
solution to the original problem, even though it may be a bad one that doesn’t connect
all pairs.

The heuristic implemented in this task uses that very idea. Starting with a dual
solution, knowing that it is a collection of paths, the heuristic calculates the number of
paths passing each node of the problem (i.e. ni =

∑k
l=1 zil , extending the notation used

on page 4 of the project description). The algorithm then proceeds as follows:

1. Calculate ni .

2. If ni < 2,∀i, abort the heuristic (since we evidently have a feasible solution).

3. Select a path p passing through any node with ni ≥ 2.

4. Let ps and pe be the first and last nodes of p, respectively. Remove p from the
dual solution.

5. Find a cheapest path p′ from ps to pe, with costs

ci =

πi , no path through node i

∞, otherwise.

6. If cost(p′) <∞, add p′ to the dual solution.

7. Repeat from step 1.

The algorithm will always terminate since it keeps removing paths from the over-
populated nodes either by finding an alternative route or by simply discarding the
path. As such, the heuristic may (although this should be rare) terminate with a (still
feasible) solution containing no paths at all. Generally it should be able to return at
least one path, however.

The algorithm has a worst-case complexity O(kn′), where n′ is the number of over-
populated nodes of the dual solution. Since the number of overpopulated nodes is
less than the total number of nodes in the problem, we can rewrite the complexity
as O(k|V |) =O(kn). The number of connections must also be less than n/2 due to the
problem structure, and as such the complexity is O(n2), which is perfectly reasonable
for a feasibility heuristic.

3.1 Results

As shown by figure 1 on the preceding page, the heuristic performs well for instance
p6, finding a feasible solution that matches the dual objective value quite early in
the subgradient algorithm. Instance p10 seems more difficult, and in that case the

4

heuristic fails to match the dual value and in fact provides no additional information
(i.e. there is no way of telling if the actual optimum is above or below k). In instance
p11, however, the heuristic finds a couple of feasible soluions which connect k pairs,
which means we can conclude that the optimum value is at least k.

To summarize, the combination of Lagrangian relaxation, the subgradient algorithm
and a feasibility heuristic indicates that p6 has no solution to the wiring problem,
p11 has a solution to the wiring problem, and that p10 may have a solution to the
wiring problem. Figure 2 on the next page shows the best feasible solution produced
by the heuristic for each of these instances, and one can verify that all these solutions
are in fact feasible by checking for overused nodes, and one can also see that they
have 6, 14 and 15 paths respectively (where k is 7, 15 and 15 for the three problem
instances).

References
Feo, T. A. and D. S. Hochbaum (Nov. 1986). ‘Lagrangian Relaxation for Testing
Infeasibility in VLSI Routing’. In: 34.6, pp. 819–831.

5

0 200400600800
0

200

400

600

(a)Instance p6.

0 1,000 2,000 3,000
0

200

400

600

800

1,000

(b)Instance p10.

0 1,000 2,000 3,000
0

200

400

600

800

1,000

1,200

(c)Instance p11.

Figure 2: The best primal feasible solution for three problem instances.

6

A Program code
1 % TMA521 - Large scale optimization

2 % Spring 2013

3 % Project 1, tasks 1 & 2

4 % Simon Sigurdhsson

5

6 % This file is the main file that solves (after editing according to

7 % instructions in comments) tasks 1 and 2 of the project.

8

9 % Files have been organized such that given code (gsp.c, sph.c and

10 % visagrid.m) resides in a subfolder "given", and the instance files

11 % are in the "instances" subfolder. Hence, we need to add these to

12 % the PATH in order to use these files.

13 % Additionally, all variables are cleared and all figures closed at

14 % the start of the program, to avoid confusion from earlier results.

15 addpath(’given’,’instances’)

16 clear all; close all; clc;

17

18 % Initialization of variables

19 % This is where all non-local variables of the program are defined.

20 % First, we have a couple of variables that control the program flow,

21 % deciding what instance we are solving and how many iterations we

22 % should run the subgradient solver for.

23 p11; % Problem to solve.

24 maxIter = 1000; % Maximum number of subgradient iterations.

25 % Then, we initialize some of the variables used in the subgradient

26 % algorithm, so that we don’t have to reallocate them inside the

27 % loop (this is very inefficient). All these variables are set to

28 % 0 initially, which makes for a good starting value for pi and will

29 % be overwritten for all other variables, except for the list of

30 % upper bounds, which is set to Inf (so that all calculated upper

31 % bounds are smaller), and lambda which is set to 2 in accordance

32 % with the project description.

33 pi = zeros(maxIter, dimX*dimY*2); % Lagrangian multipliers for each time step

34 d = zeros(maxIter, dimX*dimY*2); % Subgradient direction for each time step

35 s = zeros(maxIter, 1); % Step length for each time step

36 UBDS = ones(maxIter, 1)*Inf; % Upper bound for each time step

37 LBDS = zeros(size(UBDS)); % Lower bound for each time step

38 lambda = 2; % Step length modifier

39 optCom = []; % Storage for best feasible solution (com)

40 optNl = []; % Storage for best feasible solution (nl)

41 optPi = []; % Storage for best feasible solution (pi)

42

43 % The subgradient scheme (solver)

44 % This is where the actual work begins. The only stopping criterion

45 % used is the maximum number of iterations, and the code inside the

46 % loop pretty much follows the flow chart given in the project

47 % description.

48 for t=1:maxIter

49 % 1. Solve the Lagrangian subproblems

50 % The Lagrangian subproblems are solved as cheapest-path problems

51 % by the given function gsp. Since the output of gsp is hard to

52 % handle, a function getxij (see getxij.m) is used to transform

7

53 % the output to two 3-dimensional matrices describing the problem

54 % variables x_{ijl} and x_{t_{l}s_{l}l}. But first, the okcom

55 % function (see okcom.m) eliminates the paths with cost larger

56 % than 1, as described in the project description.

57 nl = gsp(dimX,dimY,pi(t,:)’,k,com); % Solve the subproblems

58 [ok, oknl] = okcom(pi(t,:),k,com,nl); % Which paths are "ok"?

59 kok = find(ismember(com, ok, ’rows’) == 1); % Which rows of com are "ok"?

60 [xij, xtlsl] = getxij(dimX,dimY,k,com,nl,kok);% Transform to x_{ijl} matrix

61

62 % 1.1. Calculate the primal feasibility heuristic (only for task 2)

63 % The heuristic, described in heuristic.m, creates a feasible

64 % solution based on the current solution. It returns data of the

65 % same structure as gsp, so it too requires getxij to transform

66 % the output into similar matrices.

67 [hcom, hnl] = heuristic(dimX, dimY, pi(t,:), k, com, nl); % Find primal feasible solution

68 [hxij, hxtlsl] = getxij(dimX,dimY,k,hcom,hnl,(1:length(hcom))’);% Transform to x_{ijl} matrix

69

70 % 2. Calculate upper bound, h(pi)

71 % The upper bound, essentially the Lagrangian dual value, is

72 % calculated as described in the project description. Since the

73 % output of gsp has been transformed into a matrix, the actual

74 % calculation is very similar to the mathematical formula shown

75 % in the project description.

76 lpi = repmat(pi(t,:)’, [1 dimX*dimY*2 k]); % Expand pi, for element-wise multiplication in h-calculation

77 h = sum(pi(t,:)) + sum(xtlsl - sum(sum(lpi.*xij, 1), 2), 3);% Calculate h(pi) according to project description

78

79 % 2.1. Calculate the lower bound (only for task 2)

80 % The lower bound is given by the primal feasible solution found

81 % by the heuristic. Since it is a *primal* feasible solution, the

82 % lower bound isn’t calculated using the Lagrangian dual value but

83 % using the original problem formulation. Thus, it is a bit simpler

84 % than the calculation of h(pi), but still analogous to the math

85 % described in the project description.

86 LBDS(t) = sum(hxtlsl, 3); % Count the number of connections made by the primal feasible solution

87 % Note that since LBDS(t) = 0 for all t before this assignment is

88 % made, simply commenting the above line (along with the code

89 % under 1.1) will essentialy solve task 1 instead of task 2.

90

91 % 3. Calculate subgradient direction d

92 % Again, since the output of gsp has been transformed into a

93 % suitable matrix, the calculation of the subgradient direction is

94 % very similar to the mathematical formula given by the project

95 % description.

96 sxjl = sum(sum(xij,1),3); % Pre-calculate sum (for efficiency)

97 d(t,:) = ones(size(sxjl))-sxjl;% Calculate subgradient direction

98

99 % 4. Calculate step length s

100 % The step length calculation is also pretty much a verbatim

101 % translation of the mathematical formula into MATLAB code.

102 % Note that in task 2 we actually use the lower bound given by

103 % the heuristic in the formula, while LBDS=0 for task 1 as

104 % suggested by the project description.

105 s(t) = lambda*(h-LBDS(t))/sum(d(t,:).^2);% Calculate step length

106

8

107 % 5. Take step s in direction -d

108 % If this isn’t the last iteration, the Lagrangian multipliers

109 % have to be updated for the next iteration by taking a step in

110 % the subgradient direction. Again (there’s a pattern here, no?),

111 % the transformation of the gsp output makes this a verbatim

112 % translation of math into MATLAB code.

113 if t ~= maxIter % If this isn’t the last iteration

114 pi(t+1,:) = max(zeros(size(pi(t,:))),pi(t,:)-s(t).*d(t,:));% Take a step in the subgradient direction

115 end

116

117 % 6. Decrease value of lambda

118 % In accordance with the project description, lambda is decreased

119 % by 5% every iteration. This ensures 0<lambda<2.

120 lambda = lambda*0.95;

121

122 % 7. Save for plotting

123 % In order to present graphs showing the convergence of the

124 % subgradient algorithm along with the best solution found by

125 % the heuristic (for task 2), the data is saved in the

126 % preallocated variables.

127 if (LBDS(t) >= max(LBDS)) % && false % Uncomment "&& false" for task 1

128 optCom = hcom(any(hcom,2),:); % Save the best feasible "com"

129 optNl = hnl; % Save the best feasible "nl"

130 optPi = pi; % Save the best feasible "pi"

131 end

132 UBDS(t) = h; % Save the upper bound of the current iteration

133

134 % 8. Progress bar (sort of)

135 % This simply prints some text every 25th iteration, to roughly

136 % indicate how far the algorithm has come and how long we have

137 % to wait before it will terminate.

138 if mod(t,25) == 0

139 disp([’Iteration�’, num2str(t), ’�of�’, num2str(maxIter)])

140 end

141 end

142

143 % Plotting results

144 % The subgradient algorithm is done, and it is time to show the

145 % results. First, a plot showing the convergence of the subgradient

146 % algorithm and the heuristic (in task 2) is shown. Since all data

147 % has been saved, this is fairly standard and boring MATLAB code.

148 plot(1:maxIter, UBDS, ’k-’); hold on; % Plot the upper bounds

149 plot(1:maxIter, k*ones(size(UBDS)), ’k--’); % Indicate the number of connections we want

150 plot(1:maxIter, LBDS, ’k:’); % Plot the lower bounds (only useful in task 2)

151 axis([1 maxIter 0 max(k, max(UBDS))+2]); % Set sensible axes

152 xlabel(’Iterations’); % Label the x axis

153 ylabel(’Connections’); % Label the y axis

154 legend(’Dual�objective�value’,’Connections�required’,’Primal�feasible�solution’); % Explain plots

155 % Next (only for task 2, comment out if running task 1), the best

156 % primal feasible solution found by the heuristic is shown using

157 % the given visagrid function. Again, nothing strange happening.

158 figure; % Get a new figure

159 visagrid(dimX,dimY,optNl,optCom,optPi,25); % Show the feasible solution

9

A.1 The okcom function
1 % TMA521 - Large scale optimization

2 % Spring 2013

3 % Project 1, tasks 1 & 2

4 % Simon Sigurdhsson

5

6 function [ok, newnl] = okcom(pi, k, com, nl)

7 %OKCOM Eliminates paths from com/nl if their cost is large.

8 % The okcom function, which contains code from page 6 of

9 % the project description, calculates the cost of each path

10 % in com/nl, adding the path to ok/newnl if the cost is less

11 % than one.

12 last = 0;

13 ok = zeros(k,2);

14 newnl = [];

15 for i = 1:k

16 first = last+1;

17 slask = find(nl(last+1:length(nl)) == com(i,1));

18 last = slask(1)+first-1;

19 if sum(pi(nl(first:last))) < 1

20 ok(i,:) = com(i,:);

21 newnl = [newnl; nl(first:last)];

22 end

23 end

24 end

A.2 The getxij function
1 % TMA521 - Large scale optimization

2 % Spring 2013

3 % Project 1, tasks 1 & 2

4 % Simon Sigurdhsson

5

6 function [xij, xtlsl] = getxij(dimX, dimY, k, com, nl, kok)

7 %GETXIJ Calculate x_{ijl} and x_{t_{l}s_{l}l} matrices

8 % The getxij function takes the output of gsp and transforms it

9 % into the actual problem variables x_{ijl} and x_{t_{l}s_{l}l},

10 % making it much easier to calculate the dual value, subgradient

11 % direction and step length required by the subgradient algorithm.

12 % To begin with, a couple of local variables are defined.

13 maxij = dimX*dimY*2; % The number of nodes in the problem

14 xij = zeros(maxij, maxij, k);% Output matrix, preallocated

15 xtlsl = zeros(1, 1, k); % Output matrix, preallocated

16 tempnl = nl; % Copy of nl, will be modified in loop

17 % Now, for all the "ok" paths in com/nl, we set the appropriate

18 % elements of the output matrices to 1 (remember that they are

19 % initialized to 0).

20 for i=kok’

21 % First, the part of nl containing the ith path is found.

22 % It is assumed that the paths in nl have the same order as

23 % the corresponding path endpoints in com, but that the path

24 % is stored "backwards".

25 % First, we extract the endpoints.

10

26 sn = com(i,1); en = com(i,2);

27 % Then, we extract the path corresponding to those endpoints,

28 % assuming that the path is the next one in nl (i.e. the first

29 % one in tempnl, in which we discard each path after finding it).

30 thisnl = tempnl(1:find(tempnl == sn));

31 % Discard the path we just found from tempnl.

32 tempnl = tempnl((find(tempnl == sn)+1):end);

33 % Now, we set all the appropriate elements of x_{ijl} (with l=i)

34 % to one. Since the path is backwards and the matrix is used as

35 % x_{jil},for each element j in thisnl except the last, we set

36 % xij(j, j+1, i) to one. This is done using sub2ind, since just

37 % inserting the vectors with ordinary subscript indexing sets

38 % entire blocks of the matrix (which of course is incorrect).

39 xij(sub2ind(size(xij),thisnl(1:end-1),thisnl(2:end),i*ones(length(thisnl)-1,1))) = 1;

40 % Finally, we set x_{t_{l}s_{l}l} to one, since this path

41 % obviously forms a connection.

42 xtlsl(1,1,i) = 1;

43 end

44 end

A.3 The primal feasibility heuristic function
1 % TMA521 - Large scale optimization

2 % Spring 2013

3 % Project 1, task 2

4 % Simon Sigurdhsson

5

6 % This is the primal feasibility heuristic written for task 2, and it

7 % is explained further in the report.

8

9 function [ncom, nnl] = heuristic(dimX, dimY, pi, ~, com, nl)

10 %HEURISTIC Finds a primal feasible solution given a Lagrangian dual solution

11 % This heuristic, explained further by the report, basically transforms

12 % a dual solution to a primal feasible solution by re-routing and/or

13 % discarding paths from the dual solution. It is polynomial in the number

14 % of nodes of the problem (in fact, O(n^2)), and will always terminate with

15 % a feasible (but potentially very bad) solution.

16 % First, we save the input variables since we’ll be changing them a bit.

17 nnl = nl; ncom = com; opi = pi;

18 % Now, we find the number of times each node has been used by a path.

19 % Call this number 0<=n_i<=k. It is found by simply iterating over each

20 % node and setting n_j to the number of times that node occurs in nl.

21 nodeusage = zeros(size(pi));

22 for i=1:length(nodeusage)

23 nodeusage(i) = length(find(nl == i));

24 end

25 % If solution has no overused nodes, i.e. n_i<2 for all i, the solution

26 % primal feasible since all paths are vertex disjoint. In that case, we

27 % return the input solution as our primal feasible solution.

28 if (max(nodeusage) < 2)

29 return

30 end

31 % If we have overused/infeasible nodes, we save all of them in a vector

11

32 % in order to iterate over them. We want to return a solution for which

33 % length(infeasiblenodes) = 0.

34 infeasiblenodes = find(nodeusage >= 2);

35 % While infeasiblenodes isn’t empty (i.e. its length isn’t 0), we eliminate

36 % paths passing through nodes found in the list.

37 while(~isempty(infeasiblenodes))

38 % For every infeasible node, we try to either replace a path with a

39 % new one, or simply discard it.

40 for i=1:length(infeasiblenodes)

41 % First, we reset the nl, com and pi variables by copying the

42 % com and nl variables from the current "state" (i.e. the current

43 % output variables), and pi from the input variable.

44 nl = nnl; com = ncom; pi = opi;

45 % We find the first path that passes through the first

46 % infeasible node in our list. This code is based on the code

47 % in okcom.m, and functions like it. The result is a pair of

48 % variables first,last containing the positions of the path in

49 % nl, and a pair of variables sl,tl containing the start and

50 % end node of the path, respectively.

51 node = infeasiblenodes(i);

52 first = 0; last = 0; sl = 0; tl = 0;

53 for i = 1:size(com,1)

54 first = last+1;

55 slask = find(nl(last+1:length(nl)) == com(i,1));

56 last = slask(1)+first-1;

57 if sum(nl(first:last) == node) > 0

58 tl = nl(first);

59 sl = nl(last);

60 break

61 end

62 end

63 % Since we found out path (we always will), we remove it

64 % from nl as well as removing its corresponding row in com.

65 % If we can replace it, we will.

66 nl(first:last) = [];

67 com(find(ismember(com, [sl tl], ’rows’) == 1), :) = [];

68 % Having removed our path from nl, we modify pi by setting an

69 % infinite cost for all nodes in nl. This means that when finding

70 % an alternative to the path we’ve removed, the cost of creating

71 % a path that isn’t vertex-disjoint to the others will be infinite

72 % and we can discard such solutions easily.

73 pi(nl) = Inf;

74 % Using this new pi, we find a new cheapest path between the nodes

75 % we removed earlier.

76 newnl = gsp(dimX, dimY, pi(:), 1, [tl sl]);

77 % If we didn’t find a new path, we try again with the next node

78 % in the list of infeasible nodes (the modified variables will be

79 % reset at the beginning of the next iteration). If we did find

80 % a new path, we break out of the loop.

81 if length(newnl) < 2 || sum(pi(newnl)) == Inf % If a path wasn’t found

82 continue % Continue to next iteration

83 else % Else

84 break % Break out of the loop

85 end

12

86 end

87 % Since we’re outside the infeasible-node loop, we must have either found a

88 % new path, in which case we append it to com/nl, or we didn’t, in which case

89 % it has been removed from com/nl and we simply update the output variables

90 % to match the new set of paths.

91 if length(newnl) >= 2 && sum(pi(newnl)) ~= Inf % If a new path was found

92 % Append the found path to com/nl

93 ncom = [com; sl tl];

94 nnl = [nl; flipud(newnl)];

95 else

96 % Copy the paths without appending anything

97 ncom = com;

98 nnl = nl;

99 end

100 % Before the end of the loop, we recalculate the node usage in the same way

101 % as before the loop, and update the infeasiblenodes vector to contain the

102 % new set of infeasible nodes (which will always be smaller).

103 for i=1:length(nodeusage)

104 nodeusage(i) = length(find(nl == i));

105 end

106 infeasiblenodes = find(nodeusage >= 2);

107 end

108 end

13

	Introduction
	Subgradient optimization
	The subgradient algorithm
	Results

	A feasibility heuristic
	Results

	Program code
	The okcom function
	The getxij function
	The primal feasibility heuristic function

