
TDA251 Algorithms, advanced course, 2011–12–09

Exercises 1–13
Simon Sigurdhsson∗ (900322–0291)

Exercise 1
Starting with the lower bound of the optimal solution T ∗ derived in the first lec-
ture,

T ∗ ≥ 1
m

∑
i

ti =
A
m

and the upper bound of the greedy solution T derived during the same lecture,

T ≤ 1
m

∑
i

Ti + max
i
ti =

1
m

∑
i

ti + max
i
ti =

A
m

+L

we can easily set up an expression for the approximation ratio of the greedy al-
gorithm:

T
T ∗
≤

A
m

+L

A
m

= 1 +
L
A
m.

Trivially, we then have

lim
L
A
→0

T
T ∗
≤ lim
L
A
→0

1 +
L
A
m = 1.

Exercise 2
Counterexample As a counterexample, consider bins with capacity K = 7 and the
set of items W = {6,6,1,1}. The greedy algorithm will require three bins, creating
a set of bins {{6},{6,1},{1}}. The optimal case clearly consists of two bins with the
configuration {{6,1},{6,1}}.
∗ssimon@student.chalmers.se

1

Approximation ratio Consider the optimal solution T ∗. A trivial lower bound for
this solution is given by

T ∗ ≥ 1
K

n∑
i=1

wi =
W
K
,

where we define W as the sum of all weights. Similarly we can define an upper bound
for the greedy solution T , although this requires some motivation.

Consider two consecutive bins bi and bi+1. Start by making the observation that it is
impossible for both these bins to be less than half full at the same time, since that
would lead to a contradiction: any item wj that doesn’t fit in bi must either be larger

than K
2 , meaning bi+1 is at least half full, or smaller than that, meaning meaning bi is

at least half full since wj didn’t fit. In the latter case bin bi+1 may of course also be
more than half full since item wj+1 may still fit in there, but in the worst-case scenario
wj+1 > K −w(bj+1) and bj+1 is less than half full.

This means that in the worst-case scenario, exactly T
2 of the T bins given by the

algorithm are more than half-full. These half-full bins cannot contain all items (since
the other T2 bins must have a combined weight of at least T2), but they can have a
maximum weight of K each. This means that the inequality

n∑
i=1

wi =W ≥ T
2
K

holds, which gives us an upper boundary on the algorithm’s solution T :

W ≥ T
2
K =⇒ T ≤ 2

W
K
.

With this information, we can easily calculate the approximation ratio T
T ∗

:

T
T ∗
≤

2
W
K
W
K

= 2.

Exercise 3
Problem 3.1 It is not always true that Pr(A∧ B) = Pr(A) · Pr(B). This is only true
under the assumption that the events A and B are independent.

Problem 3.2 This is always true. Additionally, if the events A and B are mutually
exclusive, the inequality can be reduced to an equality (Pr(A∨B) = Pr(A)+Pr(B)).

2

Problem 3.3 A random variable, roughly speaking, is the result of some random
process. It is almost always used in terms of its expected value, probability density
function, cumulative density function or similar properties. Formally, it is a function
X :Ω→ R defined on a probability space (Ω,F,P).

Problem 3.4 The expected value of a random variable X is rougly speaking defined
as the weighted average of the values it can take. For real-valued random variables,
the formal definition is

E[X] =
∫
Ω

XdP ,

where P is a probability measure and Ω is the sample space. This can often (i.e. when
the probability distribution of X has a probability density function f (x)) be simplified
to

E[X] =

∞∫
−∞

xf (x)dx.

For discrete random variables, the integral becomes a sum:

E[X] =
∞∑
i=1

xipi .

The expected value tells us what value X most likely will have.

Problem 3.5 The sum of two independent random variables X and Y is defined as
the convolution of their probability density functions fX(x) and fY (y):

fZ(z) = (f ∗ g)(z) =

∞∫
−∞

f (z − y)g(y)dy.

The sum of two dependent random variables X and Y is defined using their joint
distribuion fX,Y (x,y):

fZ(z) =

∞∫
−∞

z−x∫
−∞

fX,Y (x,y)dydx.

The product of the same (not nessecarily independent) random variables has been
shown (Rohatgi 1976) to derive from the probability density function

fZ(z) =

∞∫
−∞

fX,Y

(
x,
z
x

) 1
|x|

dx,

where fX,Y (x,y) is the joint distribution of X and Y .

3

Problem 3.6 This is called linearity of expectation, and is always true.

Problem 3.7 This is only true for independent random variables X and Y .

Exercise 4
Suppose that we know the optimal radius r. We can then say that our optimal solution
T ∗ is bounded by (or indeed equal to) r. Now let us analyze the approximative solution.
One can easily argue that the worst possible selection of p is a point on the boundary
of the disc covering the optimal solution. All other selections will either be better
(i.e. inside the disc) or will not be selected by the algoithm (due to being in a group
that is too “wide”). The algorithm will then (in the worst case) select all other points
in the optimal solution — these can be at most 2r away from the initial point, since
they are also covered by the disc.

This gives us a simple upper bound on the approximative solution: T ≤ 2r. We use
this, along with the optimal solution, to provide an approximation ratio:

T
T ∗
≤ 2r
r

= 2.

Exercise 5
Every set Bj will pay a price pj ≥ 0 for being hit. Consider any hitting set S, and the
collection T (a) of sets from S containing the element a. We say that the prices are
fair if

∑
j∈T (a)pj ≤ w(a), i.e. the payments of all sets containing the element a do not

exceed the weight of a ∈ S. If prices are fair, we clearly have
∑
a∈S

∑
j∈T (a)pj ≤ w(S).

Since S is a hitting set every set Bj will appear at least once in that sum, and thus∑
j pj ≤

∑
a∈S

∑
j∈T (a)pj ≤ w(S). In effect, the sum of any fair prices is a lower bound

for the cost of any hitting set, in particular the opimal hitting set.

Instead of solving the hitting set problem directly, we attack the dual problem of
constructing fair prices that maximize

∑
j pj , and use these to construct a cheap hitting

set. This is very easy: Call a set Bi tight if
∑
j∈T (a)pj = w(a) for some a ∈ Bi . Initially,

we set all pj = 0. We then proceed to take some j and raise pj until one of the sets
Bk ∈ T (a) is tight, where a ∈ Bj . This is repeated for as long as possible, and the hitting
set S is given by the set of tight sets.

Approximation ratio Now, consider the optimal solution S∗. As explained earlier,
the optimal solution has a lower bound w(S∗) ≥

∑
j pj . An upper bound for the

algorithm’s solution S is not hard to find; noting that for all a ∈ S we have
∑
j∈T (a)pj =

w(a). Summation over the elements a ∈ S gives us
∑
a∈S

∑
j∈T (a)pj = w(S), and since

every element appears at most as many times as its set Bj has members, we get
w(S) ≤ b

∑
j pj = bw(S∗) and an approximation ratio of b.

4

Exercise 6
First, we show that the problem is in NP (by providing a polynomial-time verifier),
then we show that the NP-complete Set Cover problem can be reduced to our problem,
and finally we show that any solution s to the Set Cover problem can be transformed
to a solution to our problem.

The problem is in NP A simple, polynomial-time algorithm to verify a solution
can for example consist of a breadth-first search from r trying to find all t ∈ T by
following the edges in F. Breadth-first-search algorithms are O(|V |+ |E|) and thus the
verifier is polynomial.

A reduction from the Set Cover problem As proposed in the exercise: Given an
instance of Set Cover with m subsets Si of U and unit weights, consider the graph G
that has nodes {r} ∪U and where every Si is represented by a “set node”. An element
node is adjacent to a set node if the element belongs to the set. All set nodes are
adjacent to r, and the element nodes are terminal nodes, i.e. T ≡U .

This reduction is polynomial-time, as a simple algorithm for reducing the problem is
as follows:

1. Create G and add r to the graph.

2. For every element u ∈U , add u to T (and consequently, G).

3. For every set Si , add an element g to G and create an edge from g to every vertex
t ∈ T that corresponds to an element in Si . Additionally, create an edge from g to
r.

This algorithm is O(1 + |U |+ |U ||Si |) =O(|U ||Si |).

A solution of Set Cover also solves our problem Consider a solution S to the set
cover problem and the reduction given above. S will choose one or several subsets Si
so that all elements in U are represented in their union. In the reduction, selecting
a subset Si is equivalent to including the corresponding node in the graph F. Since
all elements in U are represented in the solution S, all nodes in T will be connected
to at least one selected set node. All set nodes are also connected to r, and thus the
solution also solves our problem.

However, there is also the question of optimality. Suppose the solution S∗ to the Set
Cover problem is minimal. If that is the case, there are as few subsets S∗i as possible
(let’s say there are n such subsets), which in turn means that as few nodes as possible
will be included in G. Since the cardinality of the graph, i.e. the number of vertices,
depends completely on n (the cardinality will be n+ |U |+ 1, where |U | is constant for
each instance of the problem), a minimal solution to the Set Cover problem will also
minimize the cardinality of our problem.

5

Exercise 7
Let us set up an equivalent maximum flow problem: consider the bipartite graph
G = (X,Y ,E), and create a new graph G′ = (X,Y ,E′), where E′ are the edges E directed
from x ∈ X to y ∈ Y . Additionally, insert a source node s connected to all x ∈ X and a
sink node t connected to all y ∈ Y into the graph. We can now add flow constraints
(capacities) to all these edges.

For all edges in E′, set a capacity of (0,1). This will indicate wether the edge is selected
or not (if the flow is 1, the edge will be selected). For all edges from s to x ∈ X, set a
capacity of (0,2), representing the number of edges that can be connected to x ∈ X (0,
1 or 2). Lastly, set the capacity of all edges from y ∈ Y to t to (0,1), indicating wether
the node y ∈ Y is served at all.

After finding a maximum flow, it should be clear that the solution is valid and selects
as many y ∈ Y as possible. Finding the maximum flow can be done using for instance
the Ford-Fulkerson algorithm.

Exercise 8
Consider the graph G = (Q,E), i.e. a graph consisting of all the squares of the grid
connected by edges E so that each square is 4-connected to its neighbours. Our task
now is to find a bipartite perfect matching, i.e. a matching that divides Q into two
sets X and Y so that Q = X ∪Y . This bipartite matching will solve the problem, as it
will connect each square to one (and only one) of its neighbours creating pairs of two
that fill the set Q, if this is possible.

The division of the set Q can be made before trying to solve the problem; it is easy to
see that if we colour the squares akin to a chessboard (formally, let all qij ∈ Q with
i + j = 0 mod 2 be black, and all other squares be white), we can let all white squares
be in X and all black squares be in Y . It is trivial to see that any domino must be
placed so that one end is on a white square and one is on a black square. Thus, we
have a graph G = (X,Y ,E) to perform a perfect bipartite matching on. This is easily
solved by the Hopcroft-Karp algorithm (Hopcroft and Karp 1971), which runs in
O(m
√
n).

Exercise 9
Start with the graph G = (S,T ,E), where S are the sources, T are the sinks and E
contains all edges from S to T that are present in the original graph. Our task is then
to find a perfect matching in the graph, i.e. a selection of edges E∗ ⊆ E that connects
every source to one and only one sink, and vice versa.

For each e ∈ E assign a capacity c(e) = [0,1] and add a direction to the edge, from a

6

source s ∈ S to a sink t ∈ T . If the edge connects two sources or two sinks, discard it
as it cannot be part of the solution. Now, add a super source s0 that with edges of
capacity 1 to every source s ∈ S, as well as a super sink t0 with edges of capacity 1
from every sink t ∈ T .

Using the Ford-Fulkerson algorithm on this problem yields a set of edges carrying
the flow 1. We can interpret these as edge-disjoint paths, and since the paths from
super source to actual source (and from actual sink to super sink) all carry the flow
1 as well, the flow will only connect one edge to each source (and sink). From these
edges we can construct edge-disjoint paths by from the source adjacent to each edge to
the sink on the other end. This will give us k paths of length 1 connecting each source
to a sink, and these paths will be edge-disjoint.

Since the edges conform to the requirements of the problem, so will the paths and as
such they will solve the problem. The Ford-Fulkerson algorithm runs in polynomial
time, and so does the construction of the flow problem (this is easy to see), which
means the problem is polynomial.

Exercise 10
10.1: Deterministic algorithm The deterministic algorithm will, in the worst case,
require n steps to complete. This is due to the fact that no matter what algorithm
we use, since the array is not sorted we cannot use any clever divide-and-conquer
algorithm but must instead check every element until x is found. In the worst case,
we check all other elements before finding x.

10.2: Stochastic algorithm Consider a bin of n items of which one (x) is red and the
rest are black. Clearly, finding x using a stochastic algorithm while not repicking any
item is the same as removing items from this bin until we find a red one, and our
random variable for which we want an expected value is the number of items picked
before we get to the red one. It is well-known that this problem of selection without
replacement lends itself to the hypergeometric distribution.

The hypergeometric distribution describes the probability of k successes in n draws
from the bin, with no respect to the sequence of items (i.e. wether our red item was
picked last or not). Thus, it does not accurately describe our problem. It can however
use the distribution to reason that the probability of picking the red item on the ith
query is exactly 1

n (Wikipedia 2011).

With that information, calculating the expected value is easy:

E[X] =
n∑
i=0

i
1
n

=
n+ 1

2
.

7

10.3: (Not) disregarding chosen items The other method, which doesn’t disregard
items that are already chosen, is not preferrable. Everytime we pick an item, there is
a probability 1

n that we will pick x. The number of trials needed until we pick x will

be geometrically distributed, and as such will have an expected value E[X] = 1
p = n

(where p = 1
n is the probability of picking x), which is just as “bad” as the deterministic

algorithm. Even worse, this means that half the time it will take more than n steps to
find x, whereas the other method never takes more than n steps. Clearly, remembering
what items we already picked is preferred.

Exercise 11
11.1: At most 3 literals If every clause has at most 3 literals, the initial deduction
that at least 7

8 of the clauses are satisfied with random assignment no longer holds.
In fact, in the worst case a clause with only one literal is satisfied with the low
probability of 1

2, which is significantly less. Assuming the number of literals in a
clause is uniformly distributed on {1,2,3}, the expected ratio of satisfied clauses will
instead be

E[X] =
1
3

3∑
i=1

Pr(X satisfied | X has i clauses) =
1
3

(1
2

+
3
4

+
7
8

)
=

17
24

= 0.7083̄.

Analogously to the case of exactly 3 literals, we now deduce that 17
24k is a lower bound

for the number of clauses that can be satisfied, and that repeated random assignment
eventually will satisfy this lower bound. We also analyze the expected number of
iterations in the same manner:

17k
24

=
∑
j

jpj =
∑

j<17k
24

jpj +
∑

j≥17k
24

jpj ,

17k
24
≤

∑
j<17k

24

k′pj +
∑

j≥17k
24

kpj = k′(1− p) + kp ≤ k′ + kp.

This of course gives us that kp ≥ 17k
24 − k

′ which is at least 1
24 (completely analog-

ously to the case of exactly 3 literals). This means random assignment succeeds
with probability p ≥ 1

24k and as such the expected waiting time for success is 24k
iterations.

This means that the algorithm is three times slower when the number of literals per
clause is allowed to vary. Additionally, it has a slightly lower guarantee with only
0.7083̄k clauses in every input.

8

11.1: Exactly k literals If every clause has exactly k literals, we can perform an
analysis which is nearly identical to the one for 3 literals. We start by noting that

the probability of a clause being satisfied no longer is 7
8 but instead 2k − 1

2k
. As such,

following the analysis in the lecture notes almost to the letter, there exists a solution
with at least that fraction of clauses satisfied, and we can of course construct an
algorithm that takes on average 2kn (where n is the number of clauses) iterations to
find this solution.

An interesting consequence of this is that while the probability of a solution existing
increases with k (the probability of a clause being satisfied tends to one as k tends
to infinity), so does the time needed to find a solution. In effect, the algorithm is
exponential with respect to k.

Exercise 12
Consider a mixed algorithm in which we first perform s − 1 steps of the deterministic
algorithm followed by one step of the stochastic algorithm. In every such cycle, the
stochastic algorithm sees s − 1 steps “wasted”, and as such it will take s times longer
to reach a solution. Hence, the expected time to find a solution is sf (n), where s ≥ 2
and s ∈ N.

In the worst case, the deterministic algorithm finished before the stochastic one,
having spent a total of O

(
O(g(n))

(
1 + 1

s
))

=O(g(n)) steps. The worst-case complexity
of this hybrid algorithm is thus O(g(n)).

Exercise 13
13.1: A family of colorings What we wish to prove is that with a family of colorings
F such that |F| =O(kek log(n)), there is a non-zero probability that for every k-subset
S(k) of the original set, there exists an f ∈ F that colors the elements of said S(k) in
such a way that all k colors are represented.

We can easily work out that the probability of a given f ∈ F coloring a given S(k) is k!
kk

.

Using the inequality k!
kk
> e−k , we then have

Pr(A given f ∈ F colors a given S(k)) =
k!

kk
> e−k ,

which in turn can be used to obtain the probability that some f ∈ F colors the
subset:

Pr(Some f ∈ F colors a given S(k)) =
(
1−

(
1− e−k

)kek log(n)
)
.

9

With this being true for all of the
(n
k

)
subsets S(k), we can also compute the probability

that every S(k) is colored by some f ∈ F, using the fact that there are
(n
k

)
ways of

generating a subset S(k) from S:

Pr(Every S(k) is colored by some f ∈ F) =

= 1−Pr

⋃
S(k)

(No f ∈ F colors a given S(k))

 ≤ 1−
∑
S(k)

(
1− e−k

)kek log(n)
=

= 1−
(
n
k

)((
1− e−k

)kek log(n)
)
−−−−−−−→
k<n→∞

1.

Since the probability is strictly larger than a quantity that tends to one (and is larger
than zero for n > 1), we must conclude that there exists at least one family of colorings
F that satisfies the requirements.

13.2: Detecting paths Since we now know that the family F exists, we can safely
assume that given enough randomly generated colorings, we will find one that colors
a specific k-subset of the graph with one of each colour. Suppose this subset S(k)

is a path of length k in the graph. The probability that this path is k-colored is, as
outlined above, larger than e−k . As such, if we randomly select O

(
e−k

(
kek log(()n)

))
=

O (k log(()n)) colorings from the family F, we can assume that one of these k-colors
k-length path of the graph G. This can be tested by simply checking if any of the
subsets that are k-colored by the selected coloring are in fact paths inG. As such, given
a family F of colorings, we can find a path of length k in the graph in O(k log(()n))
expected time.

13.3: Hashing scheme If one saves the particular f ∈ F that k-colors the subset
S(k) containing the k elements you want to save, that specific coloring f could be
used as a hash. But since the size of F is so large in k, this is impractical for larger
numbers of elements. One could select a k ≈ log(()n) to gain bins of size n

log(()n) in

which to store elements (using e.g. binary search to sort through them), resulting in
O(k log(()k) log(()n)) colorings to test. This is more reasonable.

References
Hopcroft, J. E. and Karp, R. M. (1971) A n5/2 algorithm for maximum matchings in

bipartite. In Switching and Automata Theory, 1971., 12th Annual Symposium on;
oct. 1971 , pp. 122–125.

Rohatgi, V. K. (1976) An Introduction to Probability Theory Mathematical Statistics. New
York: Wiley.

10

Wikipedia (2011) Hypergeometric distribution — Wikipedia, The Free En-
cyclopedia. http://en.wikipedia.org/w/index.php?title=Hypergeometric_
distribution&oldid=461825433.

11

