
TDA251 Algorithms, advanced course, 2011–12–13

Home exam
Simon Sigurdhsson∗ (900322–0291)

1 Is the Load Balancing algorithm FPTAS?

Recall that a polynomial-time approximation scheme is any algorithm for an optim-
ization problem that approximates the optimal solution within a factor 1 + ε, while
also being polynomial in n (but the running time may depend arbitrarily on 1

ε . A fully
polynomial-time approximation scheme, however, must be polynomial in both n and
1
ε .

When analyzing the proposed algorithm, one could fairly easily prove an approxima-
tion ratio of 1 +m L

A . You’d be tempted to set ε =m L
A , but since m, L and A all depend

directly on the problem, we can’t really choose our ε freely. As such, the problem isn’t
FPTAS.

2 Selecting coloured points: An approximation ratio

Consider the algorithm’s solution as the number of colours increase indefinitely. The
absolute worst-case scenario in this case is that one point of colour c1 resides at (0,0),
while all other points are equidistibuted on the circle of radius r around it. This can
be considered a worst-case scenario since we’d otherwise define r as the distance to
whatever point lies the furthest away from c1, and apply the same methodology to
that setting. This means that the selection of points in this case will yield a perimeter
of 2πr, at least if k→∞.

Now, suppose we add points of colour c , c1 outside the disc of radius r in such a
way that the solution selected above still is gets selected by the algorithm; it is not
important specifically how this is done. Since these points all are at least r away from
the c1 point, we can provide a very optimistic bound for the optimal solution: if the
points in the optimal solution are all on a straight line, the perimiter of their convex
hull is at least 2r.

Using these bounds (the optimistic T ∗ ≥ 2r and the frankly pessimistic T ≤ 2πr), we
can compute the approximation ratio as T

T ∗ ≤
2πr
2r = π, as claimed.

∗ssimon@student.chalmers.se

1



3 An algorithm for Vertex Cover

By definition, any edge e selected by the algorithm will be covered by S, as that set
contains both its endpoints. Now consider any edge e′ that wasn’t selected by the
algorithm. Since it wasn’t selected, it must have been adjacent to one of the edges
that were. Since adjacent edges share a vertex, and both the endpoints of the selected
neighbour of e′ are in S, one of the endpoints of e′ must also be in S. This holds for all
e′, and as such all e′ are covered by S. This, in turn, means that all edges in the graph
are covered by S and as such, S is a vertex cover.

4 An approximation ratio for the Vertex Cover algorithm

Consider any edge e in the graph given by the problem. As a lower bound of the
optimal solution, this edge will have at least one adjacent vertex in the covering set S,
by definition of the problem. If there are n edges in the graph, this means the optimal
solution will include at least n vertices in the covering set; as such, we have a lower
bound n for the optimal solution T ∗.

Now, consider the same edge e in the setting of our algorithm. In the worst case, this
edge is one that was selected by the algorithm, and both its endpoints are in S. As an
absolute worst-case upper bound for the number of vertices included in S, we can
assume that every edge was selected by the algorithm, and that S thus contains 2n
vertices. We can then compute the approximation ratio as

T
T ∗
≤ 2n
n

= 2,

i.e. the resulting vertex cover S is at most twice the size of an optimal vertex cover.

5 A matching by the Vertex Cover algorithm

As shown by Figure 1 on the following page, there is no guarantee that M is a
maximum matching on the graph G. This depends on what e the algorithm chooses in
every step. It is however true that M is always a maximal matching, i.e. that all edges
e ∈ G are either in M or share a vertex with some edge in M.

6 Reducing Weighted Hitting Set to Set Cover

Part 2 of the lecture notes provide an algorithm that solves the Weighted Set Cover

problem within a factor H(d) of optimality, where d is the size of the largest set. We
can thus provide a reduction from Weighted Hitting Set to Weighted Set Cover

that ensured d ≤m, and this will mean that we can solve the problem within a factor
H(m).

Consider the following transformation of the Weighted Set Cover problem: we
construct a bipartite graph G where all sets are represented by vertices on the left,

2



(a) The original graph G. (b) A maximum matching on G. (c) A possible set of edgesM.

Figure 1: An example showing that all setsM aren’t maximum matchings.

and the universe (i.e. all elements contained in the problem) on the right, and edges
between every element in the universe on the right side and the sets it’s contained in
on the left side. An optimal solution to Weighted Set Cover then selects vertices from
the left-hand side to cover all of those on the right side, while also minimizing the
total weight of the vertices selected. Here, d (the maximum size of any set) is also the
number of edges adjacent to the most connected element of the left side.

We can perform a similar transformation of Weighted Hitting Set: construct a
bipartite graph G where all sets are represented by vertices on the left, and the
universe on the right (as with Weighted Set Cover). Weighted Hitting Set now consists
of selecting elements from the right side that cover the left side, while minimizing the
total weight of the selected vertices. Here, m is clearly the number of sets on the left
side of the graph.

It can easily be seen that by simply swapping the two sides of the bipartite graph in
the Weighted Hitting Set problem, we have the bipartite graph seen in the Set Cover
problem. If we define d as the number of edges adjacent to any set on the left side of
this flipped graph, it is also clear that solving the Set Cover problem on this graph in
the manner described above provides a solution at most H(d) times larger. Finally, m
is the number of sets on the right-hand side of the graph, and d ≤m. This means we
can solve the problem within a factor H(m).

7 Reducing Max-cut to Min-cut

Not true. Since both the max-cut and min-cut deal with the removal of existing
edges in the graph, this means that transforming the graph in the way described
actually changes the problem fundamentally. An example of this can be seen in
figure 2 on the next page, where we have a max-cut, a min-cut and the graph created
by the tranformation proposed. One can easily see that the maximum cut of the
transformation cannot be equivalent to the minimum cut of the graph, since they do
not share any edges.

3



(a) A max-cut on a
graph G.

(b) A min-cut on the graph G. (c) The transformation
of the graph G

Figure 2: An example showing that the given reduction from Min-cut to Max-cut is incorrect.

8 Testing a couple of bulbs

If the probability of a bulb being broken is p, one can easily conclude that the
probability of that bulb functioning is 1− p. We want all the bulbs of a group to be
functioning, and such a group of bulbs will be lit with probability (1− p)m, since
there are m bulbs in the group. With k groups, we can thus expect to see k (1− p)m

of the groups light up, and by extension one will see n (1− (1− p)m) bulbs that look
broken.

9 A stochastic Max-cut algorithm

Consider the very simple randomized algorithm that assigns each vertex to one part
with probability 1

2 . Now, look at a specific edge e. There is a probability 1
2 that its

endpoints are assigned to different parts. This goes for all edges, which means that an
expected number of m

2 edges will be in the cut. This also implies that there always
exists a solution with at least m

2 edges in the cut.

10 Expected time of the Max-cut algorithm

If we consider any random assignment of vertices as discussed above, the probability

that m
2 or more edges are in the cut is given by

(
1
2

)m
2 =
√

2
−m

. This means that the
expected number of assignments we have to make before finding one that has at
least m2 edges in the cut is

√
2
m

, and as such the algorithm does not find a solution in
polynomial time.

11 Arranging nodes in a directed graph

Proving that such a solution exists is fairly straight-forward. Simply consider any or-
dering of nodes v1, . . . ,vn. There are three possible scenarios of edge orientation:

1. Half the edges are correctly oriented, the other half is not.

2. More than m
2 edges are correctly oriented.

4



3. Less than m
2 edges are correctly oriented.

For cases 1 and 2, we trivially know that there exists a solution where at least m2 edges
are correctly oriented. For the third case, we can obtain such a solution by simply
reversing the ordering; vn, . . . ,v1 will trivially have at least m

2 edges that are correctly
oriented. This implies that such a solution always exists. Note that this reasoning
holds for both even and odd m.

12 Chernoff bounds on Quicksort

One can try to use Chernoff bounds on Quicksort to provide some kind information
on how likely it is that the algorithm will reach worst-case performance, or deviate
significantly from the average case. As stated in part 9 of the lecture notes, O(logn)
subproblem types exist (i.e., there are O(logn) levels of recursion), which contributes
to the overall average complexity since O(n) time is spent on each type.

Chernoff bounds can give better bounds on the depth of recursion. We can consider
the leaf of the longest branch in this recursion tree. Associate a random variable Xi
with each split in this branch, and let it take the value 1 if the split is a “fair” split
(more balanced than 25–75) and 0 otherwise. We will have a probability pi = 1

2 that
Xi = 1, since the split will be in the middle half of the interval with that probability.
To cover the worst case, we can assume that each fair split is exactly 25–75, and that
the branch we’re looking at got the larger part.

We need at least log 3
4
(n) good splits before we reach the leaf of such a worst-case

branch, and out of d = 8log 3
4
(n) splits we expect d

2 = 4log 3
4
(n) splits to be good. We

can now use Chernoff bounds to prove that there cannot be less than log 3
4
(n) with

high probability; let X be the sum of the d independent variables Xi . We then have
µ = E[X] = d

2 = 4log 3
4
(n), and we set δ = 3

4 :

Pr
(
X < log 3

4
(n)

)
= Pr

(
X <

(
1− 3

4

)
µ
)
< e−

δ2µ
2 = e−(

3
4 )2

4log3/4(n) = n−
9

4ln(4/3) <
1
n3 .

We can thus conclude that with probability 1− 1
n3 , we obtain log 3

4
(n) good splits out

of d = 8log 3
4
(n) splits in total, which means that with probability 1− 1

n3 , the recursion
depth is bounded by d = 8log 3

4
(n) and by extension the running time is bounded by

O(n lnn).

13 An improvement of trivial 3-colouring

Consider a graph with n vertices. Such a graph has exactly 3 ·2n−1 3-colourings: if one
colours any vertex of the tree with an arbitrary colour, every neighbour of a coloured
vertex then has two possible colours. Since this holds for n − 1 of the vertices, and

5



there are three ways to colour the first vertex, there is a total of 3 · 2n−1 different
colourings.

We can use this to our advantage when finding a 3-colouring: simply pick an arbitrary
tree that is a subgraph of G (such a tree can be found in polynomial time), and check
if any of the 3-colourings of that tree is also a 3-colouring of G. This algorithm has
running time O(2n), and will find a 3-colouring if one exists; any colouring of the
graph must also be a colouring of the tree since removing edges only makes it easier
to k-colour the graph (due to relaxation of constraints on the two endpoints of the
removed edge).

14 Magnitute of the improvement in 3-colouring

If the O(3n) algorithm can solve the problem with size N , the size n of the prob-
lem that could be solved by the O(2n) algorithm will be given by 2n = 3N , i.e.
n =N log2(3).

15 A Minimum Vertex Cover algorithm

As part 12 of the lecture notes describe, we can use the Nemhauser-Trotter kerneliza-
tion to identify a set of 2k nodes that contains a vertex cover of size k. This is done by
solving an LP, which can be done in polynomial time. If no such set exists, we can
conclude that 2k < c and simply stop looking.

Once the set of nodes has been found, we can use the O∗(1.47k) algorithm described
in part 11 of the lecture notes to search for a minimum vertex cover on the kernel
problem. If one is found, simply return it if its size c ≤ k or report that no vertex cover
with size c ≤ k exists.

16 Kernelization of Vertex Cover

The property that G′ is strictly smaller than G is not reasonable. What would happen
if we fed the output back into the algorithm as (G′ ,k)? Other than that, it sounds
almost exactly like kernelization and it’s not unreasonable that FPT problems have
kernelizations (in fact, they could be considered equivalent statements).

6


