Classification of Fisher’s Iris data

Andersson, Alexander (alexan@student-chalmers-se)
Kéllberg, Andreas (andkal@student-chalmers-se)
Sigurdhsson, Simon (ssimon@student-chalmers-se)

March 1, 2009

Abstract

Using statistics, specifically odds and Bayes theorem to construct
a semi-intelligent “learning” algorithm that can classify data, in this
case data from Fisher’s Iris set.

1 The Problem

Suppose we have a huge data set, and each member of this data set has a
number of properties. We need to classify these members, and because of
certain circumstances, i.e. time, cost or similar, we can’t do this by hand.
Enter pattern recognition.

Pattern recognition is a useful tool in many different areas, ranging from
genetics to OCR (Optical Character Recognition). Pattern recognition is
often needed in image analysis. The most useful form of pattern recognition
is so called “supervised learning” — where you teach the algorithm how to
classify data using a given set of parameters. All you need is a large set of
data to teach your algorithm with and some basic understanding of odds and
Bayes theorem.

1.1 Behind the Scenes

Using Bayes formula in this context is simple; one easily understands that it
is the priori/posteriori odds variety we need to use:

q;{)ost — L(Ai)qurior

Here we define A; as the event that something belongs to a certain class,
i.e. A; =“character is a ‘C’” or something along those lines, depending on
what you want to classify. ¢; is, as always, the odds for the event A;.

One can easily spot a problem here; to use this equation we need the
likelihood function L(A;) = P(X ~ z|A;), which we clearly don’t have.
That’s when supervised learning comes in handy. We estimate the likelihood
function from a given set of data for which we know that A; is true.

2 A Botanic Example

To illustrate the supervised learning method we will use MATLAB and
Fisher’s Iris data set, a data set containing four series of measurements on
Iris flowers; it contains information about the sepal length, sepal width, petal
length and petal width of the flowers, which are from the Setosa, Versicolor
and Virginica species. This means that we have three classes (the species),
and a data set with feature vectors in R* for which we already know the
class. Thus, we can use this data set to construct and teach an algorithm
how to classify Iris flowers.

First, we explore our data. We plot flowers against sepal width and petal
length, as shown in figure 1, to get a good idea of how the data is distributed

4.5

X
X
X
4 %
X X
XXX X X X
X
X X
= 3.5 xxxx
= XXXX X X X
E X X X X
= XXX X X X X XX
% XX X XXX
2 3 Px XX % XXHXX X XXX X
X X X
XXX X X X
X X X
X X
25 X X X
X
X
2 1 1 1 1 1 J
1 2 3 4 5 6 7

Petal length

Figure 1: Classification of a subset of the Iris data, plotted against sepal
width and petal length. Legend: Setosa, , Virginica.

over these two variables. The different species are clearly differentiated, even
though Versidor and Virginica are overlapping a little. That means that we
can use these variables to classify flowers with pretty high accuracy. In figure
2 lines have been added, separating the different classes with lines (note: axis
has been flipped).

We still don’t have a likelyhood function, but we can assume (it’s not
entirely correct) that the inner workings behind this function is normally
distributed with the following multivariate probability density function:

1 1
fiz) = W exp <—§(33 —) S (x — Mz))

}; is the covariance matrix for class 4, and p; is the mean feature vector.
We can assume that all classes have the same covariance matrix, that will
make things easier. Now, if we test a feature vector using these functions
(fi(xz)) we can easily determine what class the feature vector is likely to
belong in. If, for example, fi(z) > fa(x) > f3(x), the given feature vector is
more likely to belong to class 1, in our case the Setosa species.

3

r ¥
A A VAN
A . a
* %
- — *
6 A £ éA
A %A X *
% FR L *
5| Qi i AA Bxx
=
0
g
= 4r
<
15)
o
3_
2t " —§A
*
i §§ A& * *
* A * * :
% s -3 X A
1 I i Z,X T i I
2 2.5 3 3.5 4 4.5

Sepal width

Figure 2: Classification of Iris data, with lines separating the areas and some
test data plotted. Training data is plotted as stars, test data as triangles.

2.1 We Love MATLAB

Fortunately, MATLAB has a statistics toolbox, which contains nifty functions
that help setting up the classifying function for us. And — drumroll — it’s
called classify! However, we have to set up some variables before we use
this nice function.

randindex = randperm(length(class));
index1l = randindex(1:75);
index2 = randindex(76:150);

features_training = features(indexl,:);
features_validation = features(index2,:);
class_training = class(indexl);
class_validation = class(index?2);

This divides the data into two sets; we will use one set for training and the
other one to test our results. We’ll explain the code further — first, randperm
generates a random permutations of all positive integers less than or equal

to the size of our data set. Then, we split this into two parts. This gives us
two sets of integers, which we use to randomly pick feature vectors to put in
our training and validation sets.

We can now use classify on our data. It’s an easy procedure — the
version of classify we’re going to use takes four arguments; the data set
we want to validate, our training data set, the corresponding classes of our
training set and finally a parameter telling MATLAB how to adapt the data,
in our case this parameter will be linear. We also calculate and display how
much the algorithm’s guesses diverge from the actual values (remember, we
have a walidation set, for which we generate guesses) and this gives us a
measure of how good the algorithm is. Behold the MATLAB code:

allegedclass = classify(features_validation,
features_training,

class_training, ’linear’);
sum(allegedclass==class_validation)/length(allegedclass)

The printed value (let’s call it the “perfection value” of the algorithm) is
0.9733. The closer to 1 this value is, the better — it simply tells us how many
percent of the algorithm’s guesses were correct. In this case, the value we
got is unacceptable. How can we perfect the algorithm?

Multiplying values with a constant will do nothing, since we have a linear
model. Our best bet is to take the square of all values of both the training
set and the validation set (and subsequently of all feature vectors we wish to
qualify. Hopefully this will give us a better algorithm:

features_training2 = features_training."2;
features_validation2 = features_validation. 2;
allegedclass = classify(features_validation2(:,2:4),

features_training2(:,2:4),
class_training, ’linear’);
sum(allegedclass==class_validation)/length(allegedclass)

We get a perfection value of 1 now. Great, this means that our algorithm
is really good — taking the square of all values clearly made a difference. Not
surprising really, since this effectively increases the resolution of our training
(and validation) set.

2.2 Further Investigation

We investigated different combinations of features to find a suitable one.
The results are available in table 1, and quite clearly show that the method
suggested was one of the better. One can also see a decline in perfection
when more variables are introduced, with the optimal number of features

around 2 or 3 — however, this might be a coincidence since the perfection
value when all four features are considered doesn’t deviate very much from
the best combinations. What one clearly can see is that sepal length alone
is a pretty bad feature, but combined with others it may prove very useful.

We also tried smaller training sets, and acheived surprisingly excellent
results — this shows that pattern recognition may be a good technique even
if you have limited training data.

3 Conclusions

Evidently, pattern recognition is a hard problem to solve, but if the problem
is investigated properly and one finds an optimal combination of features
and a good training set, great results can be acheived. This is something you
might see more often than you think — since the technique is used in OCR,
surveillance and similar things. We can imagine that most of the time, one
does not have such an extensive training set as we do and that might be a
problem, even though we noticed that limited training sets can give great
results.

Table 1: Different seeds and including different properties give different “per-
fection values” for the algorithm. These values are without taking the square
of the feature vectors. Notice that one value is 1, this is purely a coincidence.

Properties | Seed 1 Seed 2 Seed 3 Average

Sepal length | 0.7467 0.7600 0.6800 0.7289

Sepal width 0.4800 0.6000 0.6133 0.5644

Petal length || 0.9467 0.9733 0.9467 0.9556

Petal width 0.9600 0.9867 0.9333 0.9600

Sepal length
Sepal width 0.7600 0.8267 0.8133 0.8000
Sepal length
Petal length || 0.9600 0.9600 0.9867 0.9689
Sepal length
Petal width 0.9600 0.9867 0.9333 0.9600
Sepal width
Petal length | 0.9467 0.9733 0.9333 0.9511
Sepal width
Petal width 0.9467 0.9867 0.9333 0.9556
Petal length
Petal width 0.9467 0.9867 0.9333 0.9556

Sepal length
Sepal width
Petal length || 0.9600 0.9467 0.9867 0.9645
Sepal length
Sepal width
Petal width 0.9467 0.9867 0.9333 0.9556
Sepal length
Petal length
Petal width 0.9733 0.9867 0.9467 0.9689
Sepal width
Petal length
Petal width 0.9333 1.0000 0.9333 0.9555

Sepal length
Sepal width
Petal length
Petal width 0.9600 0.9867 0.9467 0.9645

10

15

20

25

30

35

40

A MATLAB-kod — projekt6.m

hh

load irisdata.mat

ca=3;
cb=2;

figure(1l), clf, hold on
plot(features(class==1,ca),features(class==1,cb),’rx’)
plot (features(class==2,ca),features(class==2,cb),’gx’)
plot (features(class==3,ca),features(class==3,cb),’bx’)
names=[’Sepal length?’;

’Sepal width ’;

’Petal length’;

’Petal width ’];
xlabel (names(ca,:))
ylabel (names(cb,:))
legend(’Setosa’,’Versicolor’,’Virginica’)

hh

% How big portion of the data is used for training
% (The rest will be used for testing the model)
q_training=0.5;

% Create training and test-set.

randindex = randperm(length(class));
size_training=floor (length(class)*q_training)
indexl = randindex(l:size_training);

index2= randindex(size_training+1l:end);
features_training = features(indexl,:);
features_validation = features(index2,:);
class_training = class(index1);
class_validation = class(index2);

showModel(features_training,class_training,
features_validation,class_validation,b3)

hh

% Linear model based on all features
allegedclass = classify(features_validation,...

45

50

55

features_training,class_training,’linear’);
modell_result=sum(allegedclass==class_validation)/length
(allegedclass)

% Linear model based on Sepal width, Petal length and
Petal width

for n =1:15

explaining=retExplaining(n) ;

names (explaining,:)

allegedclass = classify(features_validation(:,explaining
), ..
features_training(:,explaining),class_training,’
linear ’);
sum(allegedclass==class_validation)/length(allegedclass)
end

% Quadratic model ©based on Sepal width, Petal length
and Petal width

features_training2 = features_training."2;

features_validation2 = features_validation. 2;

allegedclass = classify(features_validation2(:,2:4),...
features_training2(:,2:4),class_training,’linear’);

result2=sum(allegedclass==class_validation)/length(
allegedclass)

B MATLAB-kod — showModel.m

function showModel(features_training,class_training,
features_test,class_test,n)

%features=[features_training,features_test];

%class=[class_training,class_test];

5 ca=2;cb=3;cc=4;

figure(n),clf, hold on, grid on

plot3(features_training(class_training==1,ca),
features_training(class_training==1,cb),
features_training(class_training==1,cc),’r*’)

plot3(features_training(class_training==2,ca),
features_training(class_training==2,cb),
features_training(class_training==2,cc),’g*’)

10 plot3(features_training(class_training==3,ca),

features_training(class_training==3,cb),
features_training(class_training==3,cc),’b*’)

plot3(features_test(class_test==1,ca),features_test(
class_test==1,cb),features_test(class_test==1,cc),’r

plot3(features_test(class_test==2,ca),features_test(
class_test==2,cb),features_test(class_test==2,cc),’g
A,)

plot3(features_test(class_test==3,ca),features_test(
class_test==3,cb),features_test(class_test==3,cc),’b

15

%xy_bounds=[min(features(:,ca)) max(features(:,ca)) min(
features(:,cb)) max(features(:,cb))];

xy_bounds=axis

[X,Y] = meshgrid(linspace(xy_bounds(1l),xy_bounds(2)),
linspace(xy_bounds(3) ,xy_bounds(4)));

20X = X(:); Y = Y(:);

[C,err,P,logp,coeff] = classify([X Y],features_training

(:,[ca cbl),class_training,’linear’);

=
1]

coeff(1,2).const;

25 L coeff(1,2).1linear;

10

30

35

40

45

1 = sprintf (’0 = Yg+hg*x+lg*y’ ,K,L);
= coeff(2,3).const;
= coeff(2,3).linear;

2 = sprintf (’0 = Yg+hg*x+lg*y’ ,K,L);

H X Hh

gscatter(X,Y,C,’rgb’,’.”,1,%0ff) ;

h2 = ezplot(fl,[xy_bounds(1l),xy_bounds(2),xy_bounds(3),
xy_bounds (4)1]) ;

set (h2,’Color’,’k’,’LineWidth’ ,2)

h2 = ezplot(f2,[xy_bounds(1l),xy_bounds(2),xy_bounds(3),
xy_bounds (4)1);

set (h2,’Color’,’k’,’LineWidth’,2)

names=[’Sepal length’;
’Sepal width ’;
’Petal length’;
’Petal width ’];
xlabel (names(ca,:))
ylabel (names(cb,:))
zlabel (names(cc,:))
title(’?)
% legend(’Setosa, training’,’Versicolor, training’,’
Virginica, training’,’Setosa, validation’,’
Versicolor, validation’,’Virginica, validation’)

11

