
Assignment 2: Maintenance Planning

Simon Sigurdhsson

26 april 2010

1 Part one

1.1 The uh-stor.mod implementation

1.2 The uh-small.mod implementation

Both binary =









0 0
0 0
1 0
0 1









None binary =









0.5 0.5
0 0

0.5 0
0.5 0.5









With cgcut =









0 0
0 0
1 0
0 1









2 Part two

2.1 Varying fixed maintenance cost

2.2 Increasing component usage time

By simply weighing the objective function with the factor (T − t + 1), as seen in (1), we shift
maintenances to occur later in time, thus utilizing the components for as long as possible before
replacing them. One quite relevant drawback here is that we have to manually recalculate the
real cost of the maintenance schedule after optimization, but this is an easy task when all the
output is known.

T
∑

t=1

(

∑

i∈N

(T − t + 1)citxit + dtzt

)

(1)

(analysis of output and comments regarding CPU time de/increase and other potential
problems here)

20 40 60 80 100 120

5

10

(a) The model with constraints on all variables

20 40 60 80 100 120

5

10

(b) The model with constraints only on the zt variables

Figur 1: The model changes significantly when constraints are relaxed

1



3 Part three

3.1 Time spent in the presolver

4 Part five

Modifying the model to include a minimum remaining life at time T is actually quite trivial; we
add a constraint (2). This makes sure that there is at least one replacement of each component
in the last Ti − r time steps, thus making sure that every component has a life time of at least
r at time T .

T
∑

t=T−(Ti−r)

xit ≥ 1, i ∈ N (2)

(...)
In this model, the relevant values of r are integer values such that 0 ≤ r < 11, since the

component with the shortest life time has a life time of 11 time steps. Increasing r beyond
this value yields an unsolvable (even undefined) model. Negative values of r are of course never
relevant, and integer constraints on other variables imply that r also has to be an integer.

2



10 20 30 40 50 60 70 80 90 100

5

10

(a) dt = 0, solved in 0.02 seconds

10 20 30 40 50 60 70 80 90 100

5

10

(b) dt = 25, solved in 4.4 seconds

10 20 30 40 50 60 70 80 90 100

5

10

(c) dt = 50, solved in 16.9 seconds

10 20 30 40 50 60 70 80 90 100

5

10

(d) dt = 75, solved in 18.1 seconds

10 20 30 40 50 60 70 80 90 100

5

10

(e) dt = 100, solved in 8.1 seconds

Figur 2: Solutions for different values of dt

10 20 30 40 50 60 70 80 90 100

5

10

Figur 3: The solution with a modified objective function and dt = 25. Solved in 0.04 seconds.

3



4 4.5 5 5.5 6
0

50

100

150

200

Figur 4: CPU time required to solve the model, with ln T on the x axis. Red is with integrality
requirements, blue is without.

4



10 20 30 40 50 60 70 80 90 100

5

10

(a) r = 11, solved in 28.3 seconds with final cost 670

10 20 30 40 50 60 70 80 90 100

5

10

(b) r = 9, solved in 23.8 seconds with final cost 660

10 20 30 40 50 60 70 80 90 100

5

10

(c) r = 7, solved in 13.6 seconds with final cost 645

10 20 30 40 50 60 70 80 90 100

5

10

(d) r = 5, solved in 2.6 seconds with final cost 635

10 20 30 40 50 60 70 80 90 100

5

10

(e) r = 3, solved in 15.7 seconds with final cost 635

10 20 30 40 50 60 70 80 90 100

5

10

(f) For comparison: r = 0, solved in 12.7 seconds with final cost 615

Figur 5: Solutions to the new model with some different values of r

5


