
MVE155 – Statistical inference, 14th February 2013

Computer exercise 2
Simon Sigurdhsson, 900322–0291

This is a report on exercise 8.43 in Rice (2007), which concerns a data set of interar-

rival times of photons. The exercise consists of 6 parts labeled (a) through (f). The

exercise has been solved using the R statistical software and the code used is included

throughout the report. The preamble of this code simply loads a couple of packages

along with the data set:

1 library(ggplot2)
2 library(tikzDevice)
3 data <- read.csv("gamma-arrivals.txt", header=FALSE,
4 col.names=c("arrivals"))

Here, the ggplot2 library is used to generate figures and the tikzDevice library is

used to export them as TikZ code.

a. Histogram of the interarrival times.

7 tikz("tikz/histogram.tex", width=5, height=3)
8 p <- ggplot(data, aes(x=arrivals)) +
9 geom_histogram(binwidth=5) + xlim(0,750)

As shown by figure 1 on the following page, the short interarrival times are most

common, while the number of occurrences of any interarrival time decreases in

an exponential manner when the interrarival time gets large. This seems to fit

well with a Γ distribution with a shape parameter 𝑘 close to 1.

b. Estimated parameters for Γ(𝑘,𝜃).
12 m1 <- mean(data$arrivals)
13 m2 <- mean(data$arrivals^2)
14 moments.k <- m1^2 / (m2-m1^2)
15 moments.theta <- (m2 - m1^2) / m1

The method of moments uses the statistics E [𝑋] and E [𝑋2] (with point es-

timates 𝑋 and 𝑋2) to estimate the parameters of the distribution. For the Γ
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Figure 1: Histogram of interarrival times.

distribution, expressions for the parameters are easily derived:

⎧
⎪
⎨
⎪
⎩

E [𝑋] = 𝑘𝜃,

E [𝑋2] = 𝜃2𝑘(𝑘 + 1)
⟹

⎧
⎪
⎨
⎪
⎩

𝑘̂ = 𝑋2

𝑋2 − 𝑋2
,

̂𝜃 = 𝑋2 − 𝑋2

𝑋

.

Using these expressions with the data set yields estimated parameter values

𝑘̂MM = 1.012 and ̂𝜃MM = 78.96, which seems to correspond to the theory that

the data is Γ-distributed with 𝑘 close to 1.

18 f <- function(k) abs((log(k)-digamma(k)) -
19 (log(mean(data$arrivals))-mean(log(data$arrivals))))
20 r <- nlm(f, moments.k)
21 likelihood.k <- r$estimate
22 likelihood.theta <- mean(data$arrivals)/likelihood.k

The likelihood function given aΓdistribution is𝐿(𝑘,𝜃) = ∏𝑁
𝑖=1(Γ(𝑘)𝜃𝑘)−1𝑥𝑘−1

𝑖 exp (−𝑥/𝜃).
By instead considering the log-likelihood funcion,

𝑙(𝑘,𝜃) = (𝑘 − 1)
𝑁

∑
𝑖=1

log (𝑥𝑖) −
𝑁

∑
𝑖=1

𝑥𝑖
𝜃 − 𝑁𝑘 log (𝜃) − 𝑁 log (Γ(𝑘)) ,

the resulting maximum likelihood problem is simplified. Taking the derivative

with respect to each of the parameters 𝑘 and 𝜃 and setting it to zero (thus finding
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the maximum) yields an estimate for 𝜃,

̂𝜃 = 1
𝑘̂𝑁

𝑁

∑
𝑖=1

𝑥𝑖,

and a formula for 𝑘,

log (𝑘̂) − Γ′(𝑘̂)
Γ(𝑘̂)

= log
(

1
𝑁

𝑁

∑
𝑖=1

𝑥𝑖)
− 1

𝑁

𝑁

∑
𝑖=1

log (𝑥𝑖)

which has no closed-form solution but from which 𝑘̂ can be calculated numer-

ically.

Doing so results in estimates 𝑘̂ML = 1.026 and ̂𝜃ML = 77.88,

c. Comparing estimated distributions.

25 estimated.pdfs <- data.frame(x=0:750,
26 moments=dgamma(0:750, moments.k, scale=moments.theta),
27 likelihood=dgamma(0:750, likelihood.k, scale=likelihood.theta))
28 scalefactor = 5*length(data$arrivals) # 5 = binwidth
29 p <- p + geom_line(data=estimated.pdfs,
30 aes(x=x, y=moments*scalefactor, colour='#0072B2'))
31 p <- p + geom_line(data=estimated.pdfs,
32 aes(x=x, y=likelihood*scalefactor, colour='#D55E00'))
33 p + scale_colour_hue("Estimate",
34 labels=c('Method of moments','Maximum likelihood')) +
35 opts(legend.direction = "horizontal", legend.position = "bottom")
36 dev.off()

As shown by figure 1 on the previous page, the estimated distributions corres-

pond well to the histogram.

d. Estimate errors with bootstrapping.

39 sample.moments <- function(){
40 samples <- rgamma(length(data$arrivals), moments.k, scale=moments.theta)
41 m1 <- mean(samples)
42 m2 <- mean(samples^2)
43 k <- m1^2 / (m2-m1^2)
44 theta <- (m2 - m1^2) / m1
45 c(k, theta)
46 }
47 simulated.moments <- t(replicate(1000, sample.moments()))
48 sample.likelihood <- function(){
49 samples <- rgamma(length(data$arrivals), likelihood.k, scale=likelihood.theta)
50 f <- function(k) abs((log(k)-digamma(k)) -
51 (log(mean(samples))-mean(log(samples))))
52 r <- nlm(f, likelihood.k)
53 k <- r$estimate
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54 theta <- mean(samples)/k
55 c(k, theta)
56 }
57 simulated.likelihood <- t(replicate(1000, sample.likelihood()))
58 moments.k.error <- sd(simulated.moments[,1])
59 moments.theta.error <- sd(simulated.moments[,2])
60 likelihood.k.error <- sd(simulated.likelihood[,1])
61 likelihood.theta.error <- sd(simulated.likelihood[,2])

Bootstrapping the parameters by generating 1000 samples of the same size as

the initial dataset reveals the error of the four estimated parameters to be

𝑠𝑘̂MM
= 0.032, 𝑠 ̂𝜃MM

= 2.83,
𝑠𝑘̂ML

= 0.020, 𝑠 ̂𝜃ML
= 1.98.

As expected, the maximum likelihood estimate has a slightly smaller error.

e. Confidence intervals with bootstrapping.

64 cs <- unname(quantile(simulated.moments[,1], c(0.025, 0.975)))
65 moments.k.ci <- c(2*moments.k - cs[2], 2*moments.k - cs[1])
66 cs <- unname(quantile(simulated.moments[,2], c(0.025, 0.975)))
67 moments.theta.ci <- c(2*moments.theta - cs[2], 2*moments.theta - cs[1])
68 cs <- unname(quantile(simulated.likelihood[,1], c(0.025, 0.975)))
69 likelihood.k.ci <- c(2*likelihood.k - cs[2], 2*likelihood.k - cs[1])
70 cs <- unname(quantile(simulated.likelihood[,2], c(0.025, 0.975)))
71 likelihood.theta.ci <- c(2*likelihood.theta - cs[2], 2*likelihood.theta - cs[1])

Using the bootstrapping from (d), one can calculate confidence intervals for the

parameters. What one finds is that

𝑘MM ∈ [0.948, 1.076], 𝜃MM ∈ [73.30, 84.39],
𝑘ML ∈ [0.983, 1.062], 𝜃ML ∈ [74.22, 81.67].

Again, quite expectedly, the maximum likelihood estimate has a tighter confid-

ence interval, which of course is due to the smaller error.

f. Are arrival times a Poisson process? Since all operations above indicate that 𝑘
is close to 1, let us assume that we have 𝑘 = 1. Since it is known (and easily

provable) that Γ(1,𝜃) ∼ Exp (1/𝜃), and since the exponential distribution in fact

describes the time between events in a Poisson process (this can be derived from

the definition of a Poisson process), one can conclude that the interarrival time

distribution is fairly consistent with a Poisson process model for arrival times.
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