
MVE155 – Statistical inference, 31st January 2013

Computer exercise 1
Simon Sigurdhsson, 900322–0291

This is a report on exercise 7.65 in Rice (2007), which concerns a data set of breast
cancer mortality in the adult caucasian female population of three U.S. states during
the 1950s. The exercise consists of 14 parts labeled (a) through (n). The exercise has
been solved using the R statistical software and the code used is included throughout
the report. The preamble of this code simply loads a couple of packages along with
the data set:

1 library(ggplot2)
2 library(tikzDevice)
3 cancer <- read.csv("cancer.txt", header=FALSE,
4 col.names=c("mortality", "population"))

Here, the ggplot2 library is used to generate figures and the tikzDevice library is
used to export them as TikZ code.

a. Histogram of the population values.

7 tikz("tikz/histogram.tex", width=4, height=2.5)
8 qplot(mortality, data=cancer, geom="histogram", binwidth=5) + xlim(0,400)
9 dev.off()

A histogram showing the distribution of mortalities is shown in figure 1 on the
following page. As the histogram shows, the mean seems to be somewhere near
≈ 50 deaths.

b. Key parameters of the data.

12 b.mean <- mean(cancer$mortality)
13 b.total <- sum(cancer$mortality)
14 b.variance <- var(cancer$mortality)
15 b.stddev <- sd(cancer$mortality)

The mean mortality of the population is 39.85 deaths, which is hinted at by the
histogram in figure 1 on the next page. The total mortality in the data set is
11 997 persons. The population variance of themortality is 2598.74, which gives
a standard deviation of 50.98 deaths.
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Figure 1: Histogram of mortality rates.

c. Simulated sampling distribution.

18 simulated.mean <- replicate(500, mean(sample(cancer$mortality, 25)))
19 tikz("tikz/simulated-histogram.tex", width=4, height=2.5)
20 qplot(simulated.mean, geom="histogram", binwidth=5) + xlim(0,400)
21 dev.off()

The sampling distribution is simulated by drawing 500 IID samples of 25 obser-
vations from the data set and calculating their mean, resulting in the histogram
shown in figure 2 on page 5. unlike like the data itself, the sampling distribution
seems to correspond well to a normal distribution. As with the actual data, the
mean seems to be around 50.

d. A simple random sample.

24 random.sample <- sample(cancer$mortality, 25, replace=TRUE)
25 d.mean <- mean(random.sample)
26 d.total <- d.mean*301

A simple random sample of 25 observations is drawn from the data set. Using
this sample, the populationmean can be estimated to 29.24 deaths and the total
mortality is estimated to 8801 persons.

e. Variance estimate using the random sample.

29 e.variance <- var(random.sample)/25*(1-24/300)
30 e.stddev <- sqrt(e.variance)

The variance of the population is estimated as 𝑠2 = 𝜎2

𝑛 (1 − 𝑛 − 1
𝑁 − 1), with 𝑛 = 25

and 𝑁 = 300. The result is an estimated variance of 49.66 and an estimated
standard deviation of 7.05 deaths.
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f. Confidence intervals.

33 s.X <- e.stddev
34 f.mean.low <- d.mean - 1.96*s.X
35 f.mean.high <- d.mean + 1.96*s.X
36 f.total.low <- f.mean.low*301
37 f.total.high <- f.mean.high*301

Using the data calculated in (d) and (e), confidence intervals for the mean mor-
tality and total mortality are calculated. These confidence intervals reveal that
with 95%certainty, themeanmortality of the populationwill be in [15.43, 43.05],
while the total mortality will be in the interval [4644, 12 959]. Referring to (b),
it is clear that the actual population parameters fall within these confidence in-
tervals.

g. A larger sample size.

40 random.sample <- sample(cancer$mortality, 100, replace=TRUE)
41 g.mean <- mean(random.sample)
42 g.total <- g.mean*301
43 g.variance <- var(random.sample)/100*(1-99/300)
44 g.stddev <- sqrt(g.variance)
45 s.X <- g.stddev
46 g.mean.low <- g.mean - 1.96*s.X
47 g.mean.high <- g.mean + 1.96*s.X
48 g.total.low <- g.mean.low*301
49 g.total.high <- g.mean.high*301

Repeating the procedure of (d)–(f) for a sample of size 100, a more accurate res-
ult should be obtained. The estimated mean is now 37.10 deaths, with an estim-
ated total of 11 167 persons which is fairly close to the actual population total.
The variance is calculated to 12.57 yielding a standard deviation of 3.54 deaths.
The confidence intervals, with 95% certainty, are [30.15, 44.04] for the popula-
tion mean and [9076, 13 258] for the population total. Again, the actual values
are within these ranges.

h. A ratio estimator.

Given the purpose and design of a ratio estimator, and the fact that informa-
tion about the total number of adult females is available, it is likely that a ratio
estimator will do a fairly good job of improving the estimates.

i. Sampling distribution of the ratio estimator.

54 ratio.estimator.sample <- function(){
55 temp <- colMeans(cancer[sample(1:dim(cancer)[1], 25),])
56 unname(mean(cancer$population)*temp[1]/temp[2])
57 }
58 simulated.ratio <- replicate(500, ratio.estimator.sample())
59 tikz("tikz/simulated-ratio-histogram.tex", width=4, height=2.5)
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60 qplot(simulated.ratio, geom="histogram", binwidth=2.5) + xlim(0,400)
61 dev.off()

As shownbyfigure 3 on thenext pagewhen compared to figure 2 on the following
page, the ratio estimator does a fairly good job. The mean seems to be roughly
the same, and the histogram itself implies a similar if not lower variance.

j. A ratio estimator sample.

64 random.sample <- cancer[sample(1:dim(cancer)[1], 25, replace=TRUE),]
65 sample.ratio <- mean(random.sample$mortality)/mean(random.sample$population)
66 j.ratio.mean <- mean(cancer$population)*sample.ratio
67 j.ratio.total <- j.ratio.mean*301
68 j.normal.mean <- mean(random.sample$mortality)
69 j.normal.total <- j.normal.mean*301

Drawing a sample of size 25 and calculating both ratio estimates and the stat-
istics previously calculated in (d) illustrates the difference between these. The
ratio estimate mean mortality is 38.88 compared to the “regular” mean 44.52,
and the total mortality as calculated from the ratio estimate is 11 702 compared
to the total mortality calculated from the regular mean, 13 401.

k. Confidence interval of the ratio estimator.

72 s.normal.X <- sqrt(var(random.sample$mortality)/25*(1-24/300))
73 k.normal.ci.low <- j.normal.mean - 1.96*s.normal.X
74 k.normal.ci.high <- j.normal.mean + 1.96*s.normal.X
75 s.xy <- sum((random.sample$mortality-mean(random.sample$mortality)) *
76 (random.sample$population-mean(random.sample$population)))/24
77 s.x <- var(random.sample$population)/25*(1-24/300)
78 s.y <- var(random.sample$mortality)/25*(1-24/300)
79 s.r.square <- 1/24*(1-24/300)*1/(mean(random.sample$population)^2) *
80 (j.ratio.mean^2*s.x + s.y - 2*j.ratio.mean*s.xy)
81 s.ratio.X <- sqrt(s.r.square)
82 k.ratio.ci.low <- j.ratio.mean - 1.96*s.ratio.X
83 k.ratio.ci.high <- j.ratio.mean + 1.96*s.ratio.X

The confidence interval of the ratio estimate is [35.34, 42.41], which very good
compared to the regular confidence interval, [24.31, 64.73].

l. A stratified population mean.

86 strata.1 <- cancer[sort(cancer$population, index.return=TRUE)$ix,][1:75, ]
87 strata.2 <- cancer[sort(cancer$population, index.return=TRUE)$ix,][76:150, ]
88 strata.3 <- cancer[sort(cancer$population, index.return=TRUE)$ix,][151:225,]
89 strata.4 <- cancer[sort(cancer$population, index.return=TRUE)$ix,][226:301,]
90 sample.1 <- sample(strata.1$mortality, 6, replace=TRUE)
91 sample.2 <- sample(strata.2$mortality, 6, replace=TRUE)
92 sample.3 <- sample(strata.3$mortality, 6, replace=TRUE)
93 sample.4 <- sample(strata.4$mortality, 6, replace=TRUE)
94 W.1 <- length(strata.1[,1])/301
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Figure 2: Histogram of the simulated sampling distribution of the mean.
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Figure 3: Histogram of the simulated sampling distribution of the ratio estimate.
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95 W.2 <- length(strata.2[,1])/301
96 W.3 <- length(strata.3[,1])/301
97 W.4 <- length(strata.4[,1])/301
98 l.mean <- W.1*mean(sample.1)/301 + W.2*mean(sample.2) +
99 W.3*mean(sample.3)/301 + W.4*mean(sample.4)
100 l.total <- l.mean*301

A stratified mean was calculated from samples of size 6 from the four stratas
containing the first, second, third and fourth quarter of the data (sorted by pop-
ulation). This stratified mean was 29.09. The total mortality calculated from the
stratified samples is 8758.

m. Different allocations.

103 srs.sample <- sample(cancer$mortality, 200, replace=TRUE)
104 m.srs.mean <- mean(srs.sample)
105 m.srs.variance <- var(srs.sample)/200*(1-199/300)
106 var.1 <- var(strata.1$mortality)
107 var.2 <- var(strata.2$mortality)
108 var.3 <- var(strata.3$mortality)
109 var.4 <- var(strata.4$mortality)
110 sum.w.var <- (W.1*var.1+W.2*var.2+W.3*var.3+W.4*var.4)
111 m.w.1 <- W.1*var.1/sum.w.var
112 m.w.2 <- W.2*var.2/sum.w.var
113 m.w.3 <- W.3*var.3/sum.w.var
114 m.w.4 <- W.3*var.4/sum.w.var
115 opt.sample.1 <- sample(strata.1$mortality, 1+round(m.w.1*199), replace=TRUE)
116 opt.sample.2 <- sample(strata.2$mortality, 1+round(m.w.2*199), replace=TRUE)
117 opt.sample.3 <- sample(strata.3$mortality, 1+round(m.w.3*199), replace=TRUE)
118 opt.sample.4 <- sample(strata.4$mortality, 1+round(m.w.4*199), replace=TRUE)
119 m.opt.mean <- (W.1*mean(opt.sample.1) + W.2*mean(opt.sample.2) +
120 W.3*mean(opt.sample.3) + W.4*mean(opt.sample.4))
121 m.opt.variance <- (W.1*sd(opt.sample.1) + W.2*sd(opt.sample.2) +
122 W.3*sd(opt.sample.3) + W.4*sd(opt.sample.4))^2/200
123 prop.sample.1 <- sample(strata.1$mortality, 50, replace=TRUE)
124 prop.sample.2 <- sample(strata.2$mortality, 50, replace=TRUE)
125 prop.sample.3 <- sample(strata.3$mortality, 50, replace=TRUE)
126 prop.sample.4 <- sample(strata.4$mortality, 50, replace=TRUE)
127 m.prop.mean <- (W.1*mean(prop.sample.1) + W.2*mean(prop.sample.2) +
128 W.3*mean(prop.sample.3) + W.4*mean(prop.sample.4))
129 m.prop.variance <- (W.1*var(prop.sample.1) + W.2*var(prop.sample.2) +
130 W.3*var(prop.sample.3) + W.4*var(prop.sample.4))/200

Proportional allocation of the four strata in (l) trivially yields sampling fractions
𝑤𝑙 ≈ 1/4. Optimal allocation instead yields sampling fractions 𝑤1 = 0.003, 𝑤2 =
0.009, 𝑤3 = 0.032 and 𝑤4 = 0.943. Table 1 on the next page shows the mean and
variance for different sample allocations, with a total sample size of 200. The
proportional allocation likely deviates because it is a bad allocation of samples
(in this case, as indicated by the optimal allocation, extreme emphasis needs to
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Table 1: Mean and variance for different sample allocations.

Method Mean Variance

Simple random 40.25 4.65
Stratified proportional 40.63 6.21
Stratified optimal 37.51 1.99

be put on the outliers in the fourth strata). All the samples are still very exact,
but this is largely due to the large sample size, which is needed in order to get
any samples at all from the first strata with optimal allocation.

n. Introducing additional strata.

Hopefully, as the number of strata grows larger the optimal allocation will be-
come more even and the estimates more exact. However, as explained by Rice
(2007, p. 238), in practice it is “rarely worthwile constructing more than a few
strata”, which indicates that the gains of doing so are probably far outwegihed
by the costs of having to increase the total sample size to get enough samples
from every strata.
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