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Emil Ljungskog & Simon Sigurdhsson

This report discusses the solution of the two-dimensional transport equation,
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discretized as

aPTP = aETE + aWTW + aNTN + aSTS + b∆x∆y

and solved using the Gauss-Seidel and TDMA iterative methods. The problem is
considered on a given grid with velocity fields U and V , ρ = k = 1 and cp = 500. The
domain is governed by Neumann boundary condition on boundaries 1, 3 and 4 (south,
north and west) and a Dirichlet boundary condition with T = 5 ◦C on the eastern wall
with the inlet and outlet. The inlet temperature is TA = 20 ◦C.

Implementation
The code, written in MATLAB, consists of a number of functions to implement reading
the given mesh and associated velocity data, and iterative solver and visualization of
the obtained results. The code starts by reading the mesh, which defines the faces of
the control volumes. A node is then placed in the center of each cell. As in general for
the finite volume method, all values in a cell is stored in its node which means that
the values at the faces have to be interpolated.

The TDMA solver
The TDMA solver is slightly more cumbersome to implement than the Gauss-Seidel
described by Ljungskog and Sigurdhsson (2012). The algorithm itself is thoroughly
explained by both Versteeg and Malalasekera (2007, pp. 212–215) and Davidson
(2005), and the variant implemented alternates between solving in the x and y direc-
tions.
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Convergence criteria
The convergence criteria, as in Ljungskog and Sigurdhsson (2012), is based on the
residual R. In this problem, normalizing the residual using the total heat flux is not
optimal. Instead, the heat flux is normalized using the inlet mass flux multiplied by
the temperature difference between in- and outflow:

F = (ρUh)A∆T.

Results
Standard case
As is evident by figure 1, the difference between the Gauss-Seidel and TDMA solvers
in terms of accuracy is small when the solution has converged. The major difference
between the two methods is instead running time; TDMA converges after much fewer
iterations.

The actual solutions given are shown in figures 3 to 4 on the next page. The flow of
the domain is vaguely visible through the temperature; a vortex can be seen in the
center. All in all, the results are expected — temperature is high near the inlet and low
along the wall, and dissipates along the flow as well as diffusing in the usual manner.
Since the TDMA solver is faster, it has been used to calculate all subsequent solutions
discussed in this report. Figure 2 also shows the temperature as a function of distance
along the northern wall, which has a Neumann boundary condition.
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Figure 1: Difference between Gauss-Seidel and
TDMA solvers.
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Figure 2: Temperature at the north boundary.
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Temperature field using Gauss-Seidel solver

Figure 3: Temperature field using Gauss-Seidel solver.
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Temperature field using TDMA solver

Figure 4: Temperature field using TDMA solver.
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Temperature field using TDMA solver

Figure 5: Temperature field using TDMA solver and Dirichlet boundary condition at south boundary.

Changing boundary conditions
Substituting the boundary condition on the south wall with a Dirichlet condition
(with T = TA) yields the solution shown in figure 5. Comparing this to figure 4 on the
preceding page the average temperature is now somewhat lower, and the flow of the
liquid reveals itself through the temperature values.

Varying the convergence criteria ε

Varying the convergence criteria ε does not affect the solution to any significant degree.
As evidenced by figures 6 to 7 on the next page, increasing ε degrades the solution
near the corners, while decreasing it has no visible effect.

Varying heat conductivity k

Figures 8 to 9 on page 6 depict the problem solution for modified k. As expected,
a large k (good heat conduction) of the material means that most of the head will
leave the domain through the Neumann boundaries, leaving the temperature constant
close to T , the temperature on the Dirichlet boundary. conversely, a small k (bad heat
conduction) will leave the temperature constant close to the inlet temperature TA as
evidenced by figure 9 on page 6.
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Temperature field using TDMA solver

Figure 6: Temperature field using TDMA solver and ε = 0.01.
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Temperature field using TDMA solver

Figure 7: Temperature field using TDMA solver and ε = 0.0001.
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Temperature field using TDMA solver

Figure 8: Temperature field using TDMA solver and k = 100.
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Temperature field using TDMA solver

Figure 9: Temperature field using TDMA solver and k = 0.01.
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Heat flux and global conservation
The normalized net flux on the boundaries is 4.8% of the net convective flux through
the domain. This is fairly close to global conservation, where you’d expect the normal-
ized net flux to be 0.
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