
MTF072 – Computational Fluid Dynamics, 16th November 2012

Task K1
Emil Ljungskog & Simon Sigurdhsson

This report discusses the solution of the heat equation,

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+ b = 0,

discretized as

aPTP = aETE + aWTW + aNTN + aSTS + b∆x∆y (1)

and solved using the Gauss-Seidel iterative method. The problem is considered on
a plate with L = H = 1, k = 2(1 + 20T/T1) and the heat source b = 15(c1 − c2T 2)
(c1 = 25, c2 = 0.1) over the whole domain. Boundary conditions on boundaries
1, 2 and 4 (south, east and west) are of the Dirichlet type with T1 = 10, T2 = 20,
T4 = 10(1 + 2y/H). Boundary 3 is governed by a homogeneous Neumann condition,
i.e. ∂T

∂y
= 0.

Implementation
The code, written inMATLAB, consists of a number of functions to implementmeshing
of the domain, an iterative solver and visualization of the obtained results. The code
starts by generating a mesh (described below), which defines the faces of the control
volumes. A node was then placed in the center of each cell. As in general for the finite
volume method, all values in a cell is stored in its node which means that the values
at the faces has to be interpolated.

Generating a clever mesh
Generating a simple mesh is trivial; one simply divides the domain into equally sized
intervals in each direction. However, in order to obtainmore accurate solutionswithout
“wasting” computational power, the mesh should be finer in those areas where the
problem results in a solution with large gradients, and coarser in those areas in which
it does not.

1

Since the given problem has a solution with large gradients near the Dirichlet bound-
aries, as illustrated by figure 1a on page 4, these areas should have a finer mesh. A
mesh with varying resolution can be created by considering a geometric progression
with a given sum (the length of the domain in the relevant direction), common ratio λ
and a given number of elements n. The size of the smallest element in a mesh created
from this geometric progression (here, in the y direction) can be computed as

ȳ = H
λy − 1

λ
ny
y − 1

.

The position of each node in the mesh can then be iteratively calculated as

yi = yi−1 + ȳλi−1
y ,

where y0 = 0 and yny = H .

In the x direction, L/2 is used as the domain length and nx/2 elements are used along
with mirroring (i.e. xi = xnx−i) to obtain the fine mesh at both ends.

The source term and face values
By rewriting the source term b∆x∆y as

b∆x∆y = SU + SPTP = 15c1 − 15c2Tp · TP ,

where Tp is the temperature calculated in the previous iteration and TP is the one to
be solved for, the discretized equation (1) can be written as

aPTP = aETE + aWTW + aNTN + aSTS + SU (2)

where SP = −15c2TP has been “hidden” in aP , as it turns out that

aP = aE + aW + aN + aS − SP

where aE =
ke∆y
δxe

and so forth.

The heat conduction ke at the face is interpolated using the central differencing scheme
as

ke = fekE + (1− fe)kP

with the interpolation factor fe = ∆x
2δxe

. The same approach is of course used for the
other face values as well.

The Gauss-Seidel solver
The Gauss-Seidel method is a simple, and quite clever, way of solving a system of
equations. Applying the method on (2) requires prescribing the temperature on the

2

Dirichlet boundaries and “guessing” a temperature of 0 for the rest of the domain (the
Neumann boundary condition is implemented implicitly by setting aN = 0 on the
boundary).

The iterative process then begins with solving for TP in node 1 using the boundary
values and the initial guess, followed by solving for TP in node 2 using the recently
computed value in node 1 together with boundary values and guesses. This process is
repeated until the temperature has been solved for in all nodes. A convergence check
is then performed (see below); if the convergence criteria is met, the solution has been
found and the process is aborted. If not, the process is repeated starting with node 1
using the temperatures obtained in the previous iteration.

Since both the source and the heat conductivity is temperature dependent, the coeffi-
cients and sources in (2) have to be recomputed for every node.

Convergence criteria
To determine if the obtained solution is good enough, we need to have some kind of
accurate measurement of the error. For this purpose a residual R is introduced:

R =
∑

all nodes

|aETE + aWTW + aNTN + aSTS + SU − aPTP |.

The resudual is normalized using the total heat flux F into the domain,

F =
∑

boundary
nodes

|qi|.

The convergence criteria to be met is then
R

F
≤ ε,

where 10−4 ≤ ε ≤ 10−2.

Results
Standard case
For the standard case described in the problem introduction, a surface plot of the
solution for a 20× 20 mesh can be seen in figure 1b on the next page. Furthermore, a
contour plot and a plot of the heat flux can be seen in figures 5 to 6 on page 6.

Clearly, the temperature seems to be constant in the central part of the domain. This is
due to the temperature dependency of the source term yielding a state of equilibrium
when 15c1 − 15c2T

2
p = 0⇔ TP =

√
c1
c2 ≈ 15.8, which is very close to the temperature

in the center of the domain.

3

0
0.5

1

0

0.5

1
10

20

30

(a) A simple, linear mesh

0
0.5

1

0

0.5

1
10

20

30

(b) A mesh based on geometric progressions

Figure 1: Two different types of mesh

Changing the mesh size
Figure 2 on the next page shows the solution computed with a smaller 10× 10 grid
and a larger 40× 40 grid. Comparing this with the solution in figure 1b which was
computed with a 20× 20 mesh, it is clear that increasing the mesh size also increases
the quality (or rather, resolution) of the solution. Decreasing the mesh size does the
opposite.

The number of iterations required to compute the solution increases with the mesh
size (25, 30 and 40 iterations), and the time spent in each step as well as the total time
scales accordingly (0.1 s, 0.5 s and 3 s).

Varying heat conductivity k

If the heat conductivity k is increased or decreased by a factor 100, the solution changes
according to figure 3 on the next page. It can be seen that the boundaries seems to have
a smaller impact on the solution inside the domain for the lower value of k compared
to the standard case, and vice versa for the increased k.

This is no surprise, since a higher k means stronger diffusion and a higher heat flux,
which should lead to the obtained results.

Changing boundary conditions
As can be seen in figure 4 on the following page, the solution behaves as expectedwhen
changing the boundary conditions on boundary 1 and 3. By setting a homogeneous
Neumann condition on boundary 1, the solution is flat (at a level where the source
yields equilibrium) according to figure 4b on the next page.

4

0
0.5

1

0

0.5

1
10

20

30

(a) A coarse mesh, 10× 10

0
0.5

1

0

0.5

1
10

20

30

(b) A fine mesh, 40× 40

Figure 2: Solution with different meshes

0
0.5

1

0

0.5

1
10

20

30

(a) Smaller k (k′ = 0.01k)

0
0.5

1

0

0.5

1
10

20

30

(b) Larger k (k′ = 100k)

Figure 3: Solution for different values of k

0
0.5

1

0

0.5

1
10

20

30

(a) Dirichlet condition on boundary 3

0
0.5

1

0

0.5

1
10

20

30

(b) Neumann condition on boundary 1

Figure 4: Solution with different boundary conditions

5

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 5: The flux of the solution

0 0.5 1
0

0.2

0.4

0.6

0.8

1

15 20 25

Figure 6: Contour plot of the solution

Letting boundary 3 be of Dirichlet type with T3 = 10, the solution in 4a on the
preceding page is obtained. Again, this is an expected solution.

Visualizing the flux
To get a view of the heat fluxes in the domain, a vector plot of the flux can be seen in
figure 5. Comparing the vector plot with the contour plot in figure 6, it is clear that the
arrows representing the flux are always orthogonal to the contour lines and longer
where the contour lines are close. Neither of these observations are surprises, since
this is a fairly basic result in vector calculus.

6

