
FFR105 Stochastic optimization algorithms, 2013-10-15

Home problem 2
Simon Sigurdhsson
900322–0291

Email Sigurdhsson@gmail.com

Abstract ¿is report discusses the solutions to three out of four problems
in home problem set 2 of the course in Stochastic optimization al-
gorithms given by Chalmers University of Technology. In the �rst
part, the Travelling Salesman Problem is considered and solved using
a standard genetic algorithm as well as Ant Colony optimization tech-
niques. In the second part, a Particle Swarm optimization algorithm
is implemented and applied to a simple minimization problem as
well as an integer programming problem. Finally, in the third part,
Linear Genetic Programming is used to �t a function to provided
data points.



1 Problem 2.1
¿e �rst problem concerns the (Euclidean) Travelling Salesman Problem, in
which the shortest Hamiltonian cycle¹ of a complete, weighted graph is sought.
A data set with 50 nodes of a complete graph, and their positions (from which
the graph weights may be obtained) has been provided.

¿e problem is NP-complete,and therefore no deterministic algorithm of sub-
exponential time complexity exists. It will be shown that the number of solu-
tions to TSP is very large (on the order of 3 ⋅ 10 for 50 nodes), and as such a
brute-force minimization on the complete search space is out of the question.
¿erefore, two di�erent stochastic optimization algorithms will be applied to
the problem.

First, a simple genetic algorithm seeded with a completely random population
is implemented and applied to the problem instance. ¿en, the ant colony op-
timization algorithm is introduced. Finally, the genetic algorithm is modi�ed
to use an initial population based on the greedy nearest-neighbour solution of
TSP.

1.1 Part a
In order to demonstrate the di�culty of TSP, which will be solved using evolu-
tionary algorithms and ant colony optimization below, an upper bound² on the
number of possible tours given N cities is established.

Assuming a complete graph (i.e. there is an edge between every pair of nodes
i , j there are N! permutations of a complete enumeration of the nodes, and as
such there are N! tours (paths that visit all nodes once and only once).

Assuming now that cyclic permutations are equivalent, and that the direction

1. A path visiting all nodes of the graph exactly once.
2. ¿e bound is an upper bound due to the assumption of full connectivity, which holds for

the problem as de�ned here but not in the more general case.

1



of a tour is irrelevant, the number of distinct tours are reduced by a factor 2N .
¿is yields a �nal count of 1⁄2(N − 1)! possible tours.

1.2 Part b
¿e �rst algorithm implemented to solve TSP is a fairly standard genetic al-
gorithm, similar to that implemented in the �rst home problem (Sigurdhsson
2013). It deviates from the standard genetic algorithm described byWahde (2008,
p. 56) in only a few respects. First, crossover is entirely neglected (equivalent
to setting pc = 0) to simplify the handling of chromosomes, which are taken to
represent complete cycles of the graphs (each gene representing a node in the
sequence). Additionally, mutations are implemented as swap mutations (Wahde
2008, p. 147).

¿e algorithm was run with pmut = 1⁄51 , ptour = 0,750, tournament size j = 2,
population size N = 50 and 10 000 iterations. Since each chromosome represen-
ted a full tour of the graph, the chromosome length remained �xed at 51. ¿e
tour found using these settings had length 174,060, and is shown in �g. 1.

1.3 Part c
¿e simple genetic algorithmworks well, but isn’t adapted to the problem at hand.
Using ant colony optimization, which is inspired by the path-�nding properties
of ants (Wahde 2008, pp. 99 sqq.), better performance may be obtained. ¿e
basic shell of the ant colony optimization was provided in AntSystem.m, with
clear speci�cations of the implementation of speci�c functionality in external
functions.

¿e algorithm was applied to the given problem using parameters α = 1, β = 1,
ρ = 1⁄2 and 50 ants. A er approximately 250 iterations, the tour of length 121,340
shown in �g. 3 was found.

2



0 5 10 15 200

5

10

15

20

Figure 1: Shortest tour found a er 10 000
iterations of the �rst genetic algorithm.

0 5 10 15 200

5

10

15

20

Figure 2: Shortest tour found a er 10 000
iterations of the second genetic algorithm.

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

18

20

Figure 3: Shortest tour found a er ≈ 250 iterations of ant colony optimization.

3



1.4 Part d
Part of the performance gained from using ant colony optimization might result
from the heuristic applied in the initial stages of the algorithm, where a greedy
nearest-neighbour path is used to seed the initial pheromone levels. In order
to have a fair comparison, a a similar heuristic for the genetic algorithm is of
interest.

¿e genetic algorithm discussed earlier was modi�ed so that the initial pop-
ulation, instead of being randomly generated, instead was taken as a greedy
nearest-neighbour tour with random swap mutations. ¿e algorithm was ap-
plied to the problem with identical parameters, and the shortest tour found a er
10 000 iterations (shown in �g. 2) has length 133,920.

2 Problem 2.2
¿e second problem is centered around the implementation and testing of the
particle swarm stochastic optimization method. A standard particle swarm op-
timization was implemented as described by Wahde (2008, p. 123), including an
inertia weight (Wahde 2008, p. 128). ¿is algorithm was then applied to two sep-
arate unconstrained³ minimization problems: one general optimization problem
in two variables and one integer programming problem in �ve variables.

3. ¿e minimization problems as presented were unconstrained, with instructions to limit the
search space.

Table 1: Parameters used by the (standard) particle swarm optmization algorithm applied
to the �rst minimization problem.

Parameter vmax α ∆t −1 1 w* β† wlow
‡

Part a 0,50 1,00 1,00 2,00 2,00 1,40 0,99 0,40
Part b 1,00 1,00 1,00 2,00 2,00 1,40 0,99 0,40

* Initial inertia weight. † Inertia weight factor. ‡ Lower inertia weight.

4



2.1 Part a
¿e �rst problem applied to the particle swarm optimization implementation
was the unconstrained optimization problem to minimize

f (x , y) = 1 + (−13 + x − y + 5y − 2y) + (−29 + x + y + y − 14y) .

¿e search space was restricted to (x , y) ∈ [−10, 10], and the optimization was
performed with 100 particles over 10 000 iterations. ¿e parameters used by the
algorithm were set as shown by table 1.

¿e algorithm was run 25 times, �nding the best global minimum at x∗ =

(4,193, 4,019), with f (x∗) = 1, in all of the runs.

2.2 Part b
¿e second problem applied to the algorithm was an integer programming
problem in �ve variables, to minimize the function

f (x) = −(15 27 36 18 12)x + xT

⎛

⎜
⎜
⎜
⎜
⎜

⎝

35 −20 −10 32 −10
−20 40 −6 −31 31
−10 −6 11 −6 −10
32 −31 −6 38 −20
−10 32 −10 −20 31

⎞

⎟
⎟
⎟
⎟
⎟

⎠

x.

¿e search space was restricted to x ∈ [−30, 30] ⊂ Z.

Implementation-wise, a few modi�cations were made to adapt the algorithm to
the integer restriction. First, particle positions were rounded a er initialization,
and before evaluating particles. In addition, the best partcile and swarmpositions
were saved in their rounded format, while actual particle positions were kept
unrounded between iterations.

¿e algorithm was run with 300 particles over 1000 iterations, with parameter
values as shown in table 1. ¿is was done 25 times, yielding a best global min-
imum at x∗ = (0, 12, 23, 17, 6) with function value f (x∗) = −737. ¿e average
function value found by the algorithm was f (x) = −721,050 with standard
deviation 15,659.

5



Table 2: Parameters used by the (standard) LGP algorithm applied
to the problem. ¿e seven constant registers were de�ned as c i ∈

{−1, 1, 2, 3, 5, 7, 10}, and the run was limited to 50 000 generations.

Parameter ptour pmut pc* j† n‡ M § N ¶

Value 0,75 0,025 0,20 100 5 6 7
* Crossover probability. † Tournament size. ‡ Population size.
§ Variable registers. ¶ Constant registers.

3 Problem 2.4
¿e last problem concerns the �tting of a function to given data using linear
genetic programming. ¿e data is assumed to be of the form

g(x) =
a + ax + ax +⋯ + apx p

b + bx + bx +⋯ + bqxq
, (1)

i.e. the quotient of two polynomials.

A linear genetic program routine was implemented, based on the standard
genetic algorithm discussed in the �rst home problem and the course literature
(Sigurdhsson 2013;Wahde 2008, p. 56), including crossover,mutation and elitism.
¿e major algorithmic di�erences consist of a modi�ed crossover function,
which implements two-point crossover adapted to the speci�c length of an LGP
instruction (so as not to split instructions when performing crossover), and
a restricted mutation method that keeps track of what values are allowed at
speci�c points in each instruction of a chromosome.

¿e parameters used are shown in table 2. Notable di�erences to earlier results
(Sigurdhsson 2013, pp. 6–9) are the increased number of tournament selection
rounds and the low crossover probability, both rejected by Sigurdhsson (2013).
It is not unreasonable to expect optimal parameter values to di�er when applied
to dissimilar problems, as is the case here, and one could for instance motivate
the lower crossover probability with the fact that crossover has greater potential
to “destroy” a LGP than it has to e.g. destroy information in binary-encoded
variables.

6



−5 −4 −3 −2 −1 0 1 2 3 4 5

−0.5

0

0.5

1

Figure 4: Best approximation (solid line) of g(x), found a er 42 612 iterations of the LGP
algorithm, compared to given data (crosses). ¿e approximation has error e = 0,0315
when compared to the given data.

¿e algorithm was seeded with an initial population consisting of chromosomes
whose length varied from 10–50, and was le to run for 31 663 generations. ¿e
resulting optimal LGP is shown in �g. 4, and has error e = 0,0315. ¿e LGP
consists of 42 instructions (24 of which are e�ective, i.e. contribute to the output),
uses all of the six available variable registers and �ve of the constant registers.
When translated to the form given in eq. (1) it de�nes the function

ĝ(x) =
1680 + 1197x + 1701x + 3969x

1637 + 1269x + 3816x + 4725x + 3969x
.

References
Sigurdhsson, S. 2013. “Home problem 1”. Submitted as solution to the �rst

problem set of ffr105 Stochastic optimization algorithms. Göteborg, Sweden,
27th September.

Wahde, M. 2008. Biologically Inspired Optimization Methods: An Introduction.
1st ed. Southampton, Boston: WIT Press. isbn: 978-1-84564-148-1.

7


	Problem 2.1
	Part a
	Part b
	Part c
	Part d

	Problem 2.2
	Part a
	Part b

	Problem 2.4

