
FFR105 Stochastic optimization algorithms, 2013-09-27

Home problem 1
Simon Sigurdhsson
900322–0291

Email Sigurdhsson@gmail.com

Abstract ¿is report discusses the solutions to home problem set 1 of the course

in Stochastic optimization algorithms given by Chalmers University

of Technology. In the �rst part, a constrained optimization problem

is solved using the penalty method. In the second part, two simple

optimization problems are solved using analytical methods. Finally,

in the third part, a function is minimized using the standard genetic

algorithm as de�ned by Wahde (2008, pp. 46 sqq.).

1 Problem 1.1
¿e problem is to �nd the minimum of the function

f (x , x) = (x − 1)

+ 2(x − 2)

, (1)

subject to the constraint

g(x , x) = x

 + x

 − 1 ≤ 0, (2)

using the penalty method as described by Wahde (2008, pp. 30–33). ¿e sum

of the objective function in eq. (1) and the penalty term, denoted fP , is de�ned

as

fP(x; µ) =

⎧
⎪⎪
⎨
⎪⎪
⎩

(x − 1)

+ 2(x − 2)

+ µ(x + x

 − 1)

, x + x

 − 1 > 0,

(x − 1)

+ 2(x − 2)

otherwise.

Consequently, its gradient ∇ fP becomes

∇ fP(x; µ) =

⎛

⎜
⎜

⎝

∂ fP
∂x
∂ fP
∂x

⎞

⎟
⎟

⎠

=

⎛

⎜
⎜

⎝

2(x − 1) + 4µx(x

 + x

 − 1)

4(x − 2) + 4µx(x

 + x

 − 1)

⎞

⎟
⎟

⎠

, (3)

which is valid for the case x + x

 − 1 > 0 (otherwise, simply let µ = 0).

By considering the case µ = 0 and setting the gradient to zero, an unconstrained

minimum may be obtained. Clearly, the only stationary point of the uncon-

strained system is (1, 2), with function value f (1, 2) = 0. Since other function

values are larger (e.g. f (1, 1) = 2) and the function is convex on R, the point
must be a minimum.

¿e unconstrained minimum is a useful starting point for the penalty method.

¿e penalty method used to solve this problem uses eq. (3) and the gradient

method to obtain the minimum for several di�erent values of the penalty para-

meter µ. ¿e full implementation of the penalty method used is included with

this report, with the main program residing in PenaltyMethod.m.

1

Table 1: Results of optimizing eq. (1), constrained by eq. (2), using the penalty method
and varying values of µ. ¿ese values were obtained with a step length η = 1 ⋅ 10

− and a

threshold T = 1 ⋅ 10
−.

µ x∗ x∗

1 0,434 1,210

10 0,331 0,996

100 0,314 0,955

1000 0,312 0,951

2000 0,312 0,950

2250 0,312 0,950

Table 1 lists the optima given by the penalty method for six di�erent values of µ.

¿e data strongly implies that the penalty method converges towards a global

minimum of the constrained problem at (x , x) ≈ (0,312; 0,950).

2 Problem 1.2

2.1 Part a
¿e problem is to determine the global minimum of the function

f (x , x) = 4x − xx + 4x − 6x , (4)

subject to the constraints

x − x ≤ 0, x − 1 ≤ 0, x , x ≥ 0 (5)

using analytical methods.

First, consider the stationary points of f on the compact set de�ned by the

constraints. It is easily found that

∂ f

∂x
= 8x − x ,

∂ f

∂x
= −x + 8x − 6,

2

Table 2: Values of eq. (4) at the stationary points found.

x x f (x , x)

2⁄21 16⁄21 −16⁄7

0 6⁄8 −9⁄4

1⁄8 1 −33⁄16

0 1 −2

3⁄7 3⁄7 −9⁄7

0 0 0

1 1 1

which yields only one stationary point, (2⁄21 , 16⁄21).¿is points clearly satis�es the

constraints. Next, the stationary points on the boundaries of the constraint set are

found. ¿ere points lie on the lines (0, t), (t, 1) and (t, t), where 0 ≤ t ≤ 1. ¿is

is simple enough. In the �rst case, the function along the line is f (0, t) = 4t−6t

with the only stationary point at t = 6⁄8 corresponding to the point (0, 6⁄8). In the

second case, f (t, 1) = 4t− t−2 yields a stationary point at t = 1⁄8 corresponding

to (1⁄8 , 1). For the last case, the function f (t, t) = 7t − 6t has a stationary point

at t = 3⁄7 , i.e. the point (3⁄7 , 3⁄7).

Table 2 shows all stationary points found, as well as the corners of the con-

straint set, and the corresponding values of f . Among the stationary points, f

takes its lowest value at (2⁄21 , 16⁄21), and as such it can be concluded that the

function de�ned by eq. (4), constrained by eq. (5), has a global minimum at

x∗ = (2⁄21 , 16⁄21).

2.2 Part b
Next up is a problem concerning the function

f (x , x) = 15 + 2x + 3x ,

constrained by the equality constrant

h(x , x) = x

 + xx + x

 − 21 = 0.

3

Applying the Lagrange multiplier method as described by Wahde (2008, pp. 25–

28), the function

L(x; λ) = 15 + 2x + 3x + λ(x

 + xx + x

 − 21) (6)

is obtained, and the gradient of eq. (6) is easily computed as

∂L

∂x
= 2 + λ(2x + x), (7a)

∂L

∂x
= 3 + λ(x + 2x), (7b)

∂L

∂x
= x + xx + x

 − 21. (7c)

Setting the gradient to zero and manipulating eqs. (7a) and (7b), expressions for

the two original coordinates are obtained as x = −4⁄3λ
−
and x = −1⁄3λ

−
.¿ese

expressions may be inserted into eq. (7c), which then yields λ = ±1⁄3 .

¿e two stationary points obtained using the Lagrange method, (1, 4) and

(−1,−4), have function values 29 and 1 respectively. As such, it is clear that the

constrained function f has a minimum at x∗ = (−1,−4).

3 Problem 1.3

3.1 Part A
¿e�rst part of the �nal problem is to implement the standard genetic algorithm

as described by Wahde (2008, p. 56). ¿e implementation includes tournament

Table 3: Parameter values used in the genetic algorithm. ¿e number of generations is set

so that the number of evaluations remains �xed at 10 000.

m N ptour pc pmut j

50 100 0,75 0,80 0,02 2

4

Table 4: Results of running the genetic algorithm with the parameters given in table 3.

Data from 100 optimization rounds.

Best value Best point Worst value Mean Median

3,000 (0,000;−1,000) 85,094 3,822 3,000

selection with j rounds and a parameter ptour, mutation with a probability pmut
and a crossover probability pc . In addition, the implementation also includes

elitism, with a single copy of the best individual being included in the subsequent

generation. Table 3 lists the parameters used in the implementation, with m and

N denoting the chromosome length and population size, respectively. As noted

in table 3, the number of generations depends on the population size in order to

keep the number of evaluations constant.

¿e complete implementation is included with this report, the main program

�le being FunctionOptimization.m.

3.2 Part B
¿e objective function used to test the implementation is

g(x , x) = (1 + (x + x + 1)

(19 − 14x + 3x − 14x + 6xx + 3x))×

(30 + (2x − 3x)

(18 − 32x + 12x + 48x − 36xx + 27x)) . (8)

Table 4 lists the results of running the algorithm with the objective function

in eq. (8) 100 times. ¿e best minimum found by the algorithm is located at

x∗ = (0,000;−1,000) and has function value 3,000. Since the median of the

minima matches this value, an obvious conclusion is that this optimum is found

more than half the time, and that it therefore should be a good minimum.¿is

will be discussed further in section 3.3.

As is evident by the worst value found by the algorithm, not all rounds result

in �nding this global optimum. A back-of-the-envelope calculation using the

5

mean indicates that the algorithm has su�ered from premature convergence

once or twice, i.e. 1–2% of the time.

3.2.1 Parameter evaluation

Since the algorithm has a relatively high failure rate, an analysis of the parameter

values is in order. Tables 5 to 9 show the result of optimizing the objective

function from eq. (8), while varying some of the parameters from table 3 (one at

a time). As with the data in table 4, the data is the result of running the algorithm

100 times for each parameter set.

Simple statistical analysis has been applied to the data, testing the null hypothesis

H that the distribution of data with a varied parameter is equal to the distribu-

tion of the data in table 4 (i.e. from standard parameters). ¿e hypothesis test

carried out is the two-sample Kolmogorov-Smirnov test (described by Massey

(1951) and implemented inMATLAB as kstest2, cf.¿eMathworks, Inc. (2013)),

with 95% con�dence.

¿e parameter variations were performed under the assumption that the para-

meters are relatively robust (i.e. insensitive to small changes in value), and

therefore only large variations were included. For some parameters, e.g.muta-

tion probability and tournament selection parameter, this yields unreasonable

results, indicating that the parameter isn’t very robust on a larger scale.

Table 5: Results of running the genetic algorithm with varying tournament size. Data from

100 optimization rounds.

j Best value Best point Worst value Mean Median H rejected

0 3,000 (0,001;−1,000) 5,586 3,189 3,029 Yes

1 3,000 (0,000;−1,000) 3,002 3,000 3,000 Yes

2 3,000 (0,000;−1,000) 4,699 3,018 3,000 No

5 3,000 (0,000;−1,000) 89,822 7,306 3,000 Yes

10 3,000 (0,000;−1,000) 54,900 3,604 3,000 Yes

6

Tournament size j Table 5 contains data obtained by varying the tournament

size. It is apparent that a tournament size of 0 (selecting individuals at random,

disregarding �tness) results in poor perfomance, as indicated by the rejected

hypothesis test. Large tournaments (j > 2) perform fairly well, but are still worse

than the case j = 2, and the null hypothesis is rejected.

¿e tournament size j = 1 constitutes an interesting case. Although the null

hypothesis is in fact rejected, it is evident that the actual results are better than the

results in table 4.¿e reason the null hypothesis is rejected is that the alternative,

H, is two-sided (i.e. H represents the alternative hypothesis “the tail of the

distribution is larger or smaller”), and in this case the tail of the distribution is

smaller (hence, better).

Tournament selection parameter ptour ¿e e�ects of varying the tournament

selection parameter are shown by table 6. ¿e only case for which the null

hypothesis is not rejected is ptour = 0.75, the original parameter value. ¿is

indicates that the algorithm, when used on this particular problem, is sensitive

to the value of this parameter. ¿e median and mean of the cases for which the

null hypothesis is rejected indicate that these parameter values are in fact worse

than the original one.

In particular, the case ptour = 0 (always selecting the weaker individual) has

very poor performance — in fact, the real minimum is never found in this case.

Similarly, the case ptour = 1⁄4 has poor performance. Of course, preferring the

weaker individual makes little sense and this is why these parameter values have

such poor performance.

Table 6: Results of running the genetic algorithm with varying tournament selection

parameter. Data from 100 optimization rounds.

ptour Best value Best point Worst value Mean Median H rejected

0,00 4,468 (−0,060;−0,973) 266,330 54,964 41,803 Yes

0,25 3,003 (−0,000;−1,003) 97,603 23,880 15,158 Yes

0,50 3,000 (0,000;−1,000) 4,956 3,108 3,023 Yes

0,75 3,000 (0,000;−1,000) 3,018 3,000 3,000 No

1,00 3,000 (0,000;−1,000) 84,009 5,613 3,000 Yes

7

Table 7: Results of running the genetic algorithm with varying mutation probability. Data

from 100 optimization rounds.

pmut Best value Best point Worst value Mean Median H rejected

0,00 3,000 (0,000;−1,000) 98,994 14,190 4,805 Yes

0,02 3,000 (0,000;−1,000) 84,578 3,851 3,000 No

0,50 3,003 (0,003;−1,001) 8,946 4,046 3,704 Yes

0,75 3,003 (0,002;−0,997) 7,582 3,969 3,562 Yes

1,00 3,007 (0,006;−0,999) 31,607 8,371 4,749 Yes

Surprisingly, the case ptour = 1 (never picking the weaker individual) also rejects

the null hypothesis (and has higher median and mean). ¿is is likely due to

premature convergence. ¿e algorithm still performs fairly well in this case, as

indicated by the median being close to the best value found.

Mutation probability pmut Mutation has the important e�ect of introducing

new genetic material into the population, thereby somewhat limiting the risk

of premature convergence. A large mutation probability may have the adverse

e�ect of destroying “good” genetic material. As shown by table 7, the algorithm

is very sensitive to large changes in mutation probability.¿e only case for which

the null hypothesis isn’t rejected is the original parameter value, pmut = m
−
.

¿is is in accordance with theoretical results.

¿e only other cases with even remotely acceptable performance are pmut = 1⁄2

and pmut = 3⁄4 . For pmut = 0 the results indicate that the algorithm su�ers from

premature convergence a lot of the time, which would be expected since no

“new” genetic material is introduced.

Crossover probability pc As indicated by table 8, the algorithm is fairly insensit-

ive to changes in the crossover probability. ¿e null hypothesis is only rejected

for pc = 1⁄5 , and the median is equal to the best value in all cases. ¿e rejected

case will most likely result in genetic material spreading very slowly, which

means more generations are required to reach the global optimum.

Since elitism has been applied, there is no risk of completely losing the best

individual, which may be why the case pc = 1 doesn’t have poor performance.

8

Table 8: Results of running the genetic algorithm with varying crossover probability. Data

from 100 optimization rounds.

pc Best value Best point Worst value Mean Median H rejected

0,20 3,000 (0,000;−1,000) 84,001 4,162 3,000 Yes

0,40 3,000 (0,000;−1,000) 33,910 3,646 3,000 No

0,60 3,000 (0,000;−1,000) 3,174 3,002 3,000 No

0,80 3,000 (0,000;−1,000) 4,581 3,017 3,000 No

1,00 3,000 (0,000;−1,000) 84,000 3,810 3,000 No

With no elitism, there is great potential to destroy “good” genetic material with

a high pc . Conversely, a low pc will result in slower convergence, since the

algorithm will be driven mainly by mutation.

One may also observe that the case pc = 3⁄5 looks like it has slightly better

performance than the original parameter value pc = 4⁄5 . ¿e di�erence isn’t

signi�cant (in that case, the null hypothesis would be rejected as discussed

earlier), but it may be worth investigating further.

Population size N Table 9 shows data obtained by varying the population size.

In order to keep the results comparable, the number of evaluations has been

�xed at 10 000, whichmeans the number of generations g varies with population

size.

Again, the only case for which the null hypothesis is not rejected is the original

parameter value. Looking at the mean and median, the case N = 50 has accept-

able performance as well, while N = 10 o en doesn’t converge (viz. the worst

value found is very large, as is the mean).

Larger populations have slightly better performance, which is likely due to them

“blanketing” the region with individuals, covering much of the domain. ¿is

means the initial population likely has individuals close to the optimum, while

they don’t have enough generations to converge all the way.

9

Table 9: Results of running the genetic algorithm with varying population size and number

of generations, such that the number of evaluations remain �xed at 10 000. Data from 100

optimization rounds.

N Best value Best point Worst value Mean Median H rejected

10 3,000 (0,000;−1,000) 249,594 50,004 4,581 Yes

50 3,000 (0,000;−1,000) 84,000 3,942 3,000 Yes

100 3,000 (0,000;−1,000) 4,012 3,012 3,000 No

500 3,000 (−0,000;−1,000) 3,625 3,034 3,011 Yes

1000 3,001 (0,001;−0,999) 4,459 3,200 3,123 Yes

3.3 Part C
¿e �nal issue at hand is to prove, analytically, that the function given by eq. (8)

has a stationary point at x∗ = (0,000;−1,000), the point obtained through

stochastic optimization using the standard genetic algorithm.

Consider g(x) = (1 + gg)(30 + gg) with

g(x) = (1 + x + x)

, g(x) = (2x − 3x)

,

g(x) = (19 − 14x + 3x − 14x + 6xx + 3x),

g(x) = (18 − 32x + 12x + 48x − 36xx + 27x),

which is a rephrasing of eq. (8) in terms of four subsidiary functions. It is trivially

known that the derivative of g may be written g′ = (1 + gg)(g
′

g + gg
′

) +

(g′g + gg
′

)(30 + gg), which may be extended to the gradient as

∇g(x) =

⎛

⎜
⎜

⎝

(1 + gg) (
∂g
∂x

g + g
∂g
∂x
) + (

∂g
∂x

g + g
∂g
∂x
) (30 + gg)

(1 + gg) (
∂g
∂x

g + g
∂g
∂x
) + (

∂g
∂x

g + g
∂g
∂x
) (30 + gg)

⎞

⎟
⎟

⎠

.

10

Partial derivatives of the subsidiay functions may be computed as

∂g

∂x
=

∂g

∂x
= 2x + 2x + 2,

∂g

∂x
=

∂g

∂x
= 6x + 6x − 14,

∂g

∂x
= 8x − 12x ,

∂g

∂x
= −12x + 18x ,

∂g

∂x
= 24x − 36x − 32,

∂g

∂x
= −36x + 54x + 48.

To avoid the considerable headache of inserting these equations directly into the

rewritten g (since the objective is to assert that x∗ is a stationary point, not to
provide a full analytic expression for ∇g), numerical values for these functions

at x∗ are obtained as

g(x
∗
) = 0, g(x

∗
) = 36, g(x

∗
) = 9, g(x

∗
) = −3,

∂g

∂x
(x∗) = 0,

∂g

∂x
(x∗) = −8,

∂g

∂x
(x∗) = 12,

∂g

∂x
(x∗) = 4,

∂g

∂x
(x∗) = 0,

∂g

∂x
(x∗) = −8,

∂g

∂x
(x∗) = −18,

∂g

∂x
(x∗) = −6.

¿is yields the gradient

∇g(x) = (
1 ⋅ (−12 ⋅ 3 + 9 ⋅ 4) + 0 ⋅ (30 − 9 ⋅ 3)

1 ⋅ (18 ⋅ 3 − 9 ⋅ 6) + 0 ⋅ (30 − 9 ⋅ 3)
) = (

0

0
) ,

which shows that x∗ is a stationary point as desired, with g(x∗) = 3.

References
Massey, Frank J., Jr. 1951. “¿e Kolmogorov-Smirnov Test for Goodness of Fit”.

Journal of the American Statistical Association 46 (253): 68–78.

¿e Mathworks, Inc. 2013. Two-sample Kolmogorov-Smirnov test. Accessed

24th September 2013. http://www.mathworks.se/help/stats/kstest2.html.

Wahde, M. 2008. Biologically Inspired Optimization Methods: An Introduction.

1st ed. Southampton, Boston: WIT Press. isbn: 978-1-84564-148-1.

11

http://www.mathworks.se/help/stats/kstest2.html

	Problem 1.1
	Problem 1.2
	Part a
	Part b

	Problem 1.3
	Part A
	Part B
	Parameter evaluation

	Part C

